cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 136 results. Next

A060539 Table by antidiagonals of number of ways of choosing k items from n*k.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 20, 15, 4, 1, 70, 84, 28, 5, 1, 252, 495, 220, 45, 6, 1, 924, 3003, 1820, 455, 66, 7, 1, 3432, 18564, 15504, 4845, 816, 91, 8, 1, 12870, 116280, 134596, 53130, 10626, 1330, 120, 9, 1, 48620, 735471, 1184040, 593775, 142506, 20475, 2024, 153, 10
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Examples

			Square array A(n,k) begins:
  1,  1,    1,     1,      1,       1,        1, ...
  2,  6,   20,    70,    252,     924,     3432, ...
  3, 15,   84,   495,   3003,   18564,   116280, ...
  4, 28,  220,  1820,  15504,  134596,  1184040, ...
  5, 45,  455,  4845,  53130,  593775,  6724520, ...
  6, 66,  816, 10626, 142506, 1947792, 26978328, ...
  7, 91, 1330, 20475, 324632, 5245786, 85900584, ...
		

Crossrefs

Columns include A000027, A000384, A006566, A060541.
Main diagonal is A014062.
Cf. A295772.

Programs

  • Maple
    A:= (n, k)-> binomial(n*k, k):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);  # Alois P. Heinz, Jul 28 2023
  • PARI
    { i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060539.txt", i++, " ", binomial(n*k, k))); ) } \\ Harry J. Smith, Jul 06 2009

Formula

A(n,k) = binomial(n*k,k) = A007318(n*k,k) = A060538(n,k)/A060538(n-1,k).

A169958 a(n) = binomial(9*n, n).

Original entry on oeis.org

1, 9, 153, 2925, 58905, 1221759, 25827165, 553270671, 11969016345, 260887834350, 5720645481903, 126050526132804, 2788629694000605, 61902409203193230, 1378095785451705375, 30756373941461374800, 687917389635036844569, 15415916972482007401455, 346051021610256116115150
Offset: 0

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169959 - A169961 (k = 10 thru 12).

Programs

Formula

a(n) = C(9*n-1, n-1)*C(81*n^2, 2)/(3*n*C(9*n+1, 3)), n > 0. - Gary Detlefs, Jan 02 2014
From Peter Bala, Feb 21 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 8*A(x))^8 + (9^9)*x*A(x)^9 = 0.
Sum_{n >= 1} a(n)*( x*(8*x + 9)^8/(9^9*(1 + x)^9) )^n = x. (End)
D-finite with recurrence 128*n*(8*n-5) *(4*n-1) *(8*n-7) *(2*n-1) *(8*n-1) *(4*n-3) *(8*n-3)*a(n) -81*(9*n-7) *(9*n-5) *(3*n-1) *(9*n-1) *(9*n-8) *(3*n-2) *(9*n-4) *(9*n-2)*a(n-1)=0. - R. J. Mathar, Aug 19 2025
G.f.: 8F7(8/9, 7/9, 2/3, 5/9, 4/9, 1/3, 2/9 ,1/9 ; 7/8, 3/4, 5/8, 1/2, 3/8, 1/4, 1/8; 387420489/16777216*x). - R. J. Mathar, Aug 19 2025

A188686 Binomial transform of the sequence of binomial(3n,n).

Original entry on oeis.org

1, 4, 22, 139, 934, 6484, 45931, 329893, 2393470, 17499892, 128732992, 951674398, 7064138779, 52616241370, 393052285291, 2943582912904, 22093111508686, 166141033332448, 1251528633163264, 9442096410241438, 71333250226656784
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Comments

Binomial transform of A005809.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[3k,k],{k,0,n}],{n,0,22}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(3*k,k),k,0,n),n,0,20);

Formula

G.f.: 2*cos((1/3)*arcsin(3/2*sqrt(3x/(1-x))))/sqrt(4-35x+31x^2).
D-finite recurrence: 2*n*(2*n-1)*a(n) = (39*n^2-43*n+12)*a(n-1) - 2*(n-1)*(33*n-34)*a(n-2) + 31*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 31^(n+1/2)/(6*4^n*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
a(n) = [x^n] (1 + 4*x + 3*x^2 + x^3)^n. - Ilya Gutkovskiy, Apr 17 2025

A004381 Binomial coefficient C(8n,n).

Original entry on oeis.org

1, 8, 120, 2024, 35960, 658008, 12271512, 231917400, 4426165368, 85113005120, 1646492110120, 32006008361808, 624668654531480, 12233149001721760, 240260199935164200, 4730523156632595024, 93343021201262177400, 1845382436487682488000
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Row 8 of A060539.
binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A169958 - A169961 (k = 9 thru 12).

Programs

Formula

a(n) = C(8*n-1,n-1)*C(64*n^2,2)/(3*n*C(8*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 7F6(1/8,1/4,3/8,1/2,5/8,3/4,7/8; 1/7,2/7,3/7,4/7,5/7,6/7; 16777216*x/823543).
E.g.f.: 7F7(1/8,1/4,3/8,1/2,5/8,3/4,7/8; 1/7,2/7,3/7,4/7,5/7,6/7,1; 16777216*x/823543).
a(n) ~ 2^(24*n+1)/(sqrt(Pi*n)*7^(7*n+1/2)). (End)
From Peter Bala, Feb 20 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 7*A(x))^7 + (8^8)*x*A(x)^8 = 0.
Sum_{n >= 1} a(n)*( x*(7*x + 8)^7/(8^8*(1 + x)^8) )^n = x. (End)
From Seiichi Manyama, Aug 16 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(8*n+1,k).
G.f.: 1/(1 - 8*x*g^7) where g = 1+x*g^8 is the g.f. of A007556.
G.f.: g/(8-7*g) where g = 1+x*g^8 is the g.f. of A007556. (End)

A117671 a(n) = binomial(3*n+1, n+1).

Original entry on oeis.org

1, 6, 35, 210, 1287, 8008, 50388, 319770, 2042975, 13123110, 84672315, 548354040, 3562467300, 23206929840, 151532656696, 991493848554, 6499270398159, 42671977361650, 280576272201225, 1847253511032930, 12176310231149295, 80347448443237920, 530707489338171600
Offset: 0

Views

Author

Zerinvary Lajos, Apr 12 2006

Keywords

Examples

			if n=0 then C(3*0+1,0+1) = C(1,1) = 1.
if n=10 then C(3*10+1,10+1) = C(31,11) = 84672315.
		

Crossrefs

Cf. A025174 (binomial(3n-1,n-1)), A006013.

Programs

  • Haskell
    a117671 n = a258993 (2 * n + 1) n  -- Reinhard Zumkeller, Jun 22 2015
    
  • Maple
    seq(binomial(3*n+1,n+1),n=0..30); # Robert Israel, Oct 10 2017
  • Mathematica
    Table[Binomial[3n+1,n+1],{n,0,20}] (* Harvey P. Dale, Jul 19 2011 *)
  • PARI
    vector(30, n, n--; binomial(3*n+1, n+1)) \\ Altug Alkan, Nov 04 2015

Formula

G.f.: (2*(-1+Hypergeometric2F1[-(1/3),1/3,-(1/2),(27*x)/4]))/(3*x). - Harvey P. Dale, Jul 19 2011
G.f.: A(x) = B'(x)/B(x)-B'(x)-1/x, where B(x) = 4/3*sin(1/3*asin(sqrt((27*x)/4)))^2. - Vladimir Kruchinin, Nov 26 2014
a(n) = A258993(2*n+1, n). - Reinhard Zumkeller, Jun 22 2015
From Peter Bala, Nov 04 2015: (Start)
With an extra initial term equal to 1, the o.g.f. equals f(x)/g(x)^2, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764.
More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A004319 (k = 3), A236194 (k = 4), A013698 (k = 5), A165817 (k = -1). (End)
a(n) = [x^(2*n)] 1/(1 - x)^(n+2). - Ilya Gutkovskiy, Oct 10 2017
a(n+1) = 3*(3*n+2)*(3*n+4)*a(n)/(2*(n+2)*(2*n+1)). - Robert Israel, Oct 10 2017
a(n) ~ 3^(3*n+3/2) / (2^(2*n+1) * sqrt(Pi*n)). - Amiram Eldar, Sep 05 2025

A160906 Row sums of A159841.

Original entry on oeis.org

1, 5, 29, 176, 1093, 6885, 43796, 280600, 1807781, 11698223, 75973189, 494889092, 3231947596, 21153123932, 138712176296, 911137377456, 5993760282021, 39481335979779, 260377117268087, 1719026098532296, 11360252318843933, 75141910203168229, 497431016774189912
Offset: 0

Views

Author

R. J. Mathar, May 29 2009

Keywords

Crossrefs

Programs

  • Maple
    A160906 := proc(n) add( A159841(n,k), k=0..n) ; end:
    seq(A160906(n), n=0..20) ;
  • Mathematica
    Table[Sum[Binomial[3*n+1, 2*n+k+1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 25 2017 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n+1, 2*n+k+1)); \\ Michel Marcus, Oct 31 2017
  • Sage
    a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],-1)
    [simplify(a(n)) for n in range(21)] # Peter Luschny, May 19 2015
    

Formula

a(n) = Sum_{k=0..n} A159841(n,k).
Conjecture: a(2n+1) = A075273(3n).
a(n) = C(3*n+1,n)*Hyper2F1([1,-n],[2*n+2],-1). - Peter Luschny, May 19 2015
Conjecture: 2*n*(2*n-1)*(5*n-4)*a(n) +(-295*n^3+451*n^2-130*n-24)*a(n-1) +24*(5*n+1)*(3*n-4)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, Jul 20 2016
a(n) = [x^n] 1/((1 - 2*x)*(1 - x)^(2*n+1)). - Ilya Gutkovskiy, Oct 25 2017
a(n) ~ 3^(3*n + 3/2) / (sqrt(Pi*n) * 2^(2*n + 1)). - Vaclav Kotesovec, Oct 25 2017
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+k,k). - Seiichi Manyama, Aug 03 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n+1,k) * binomial(3*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((2-g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 12 2025
G.f.: B(x)^2/(1 + (B(x)-1)/3), where B(x) is the g.f. of A005809. - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g*(6-g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 16 2025

A234839 a(n) = Sum_{k = 0..n} (-1)^k * binomial(n,k) * binomial(2*n,k).

Original entry on oeis.org

1, -1, -1, 8, -17, -1, 116, -344, 239, 1709, -7001, 9316, 22276, -138412, 268568, 189008, -2608913, 6809417, -1814851, -45852416, 159116983, -155628353, -720492928, 3481793888, -5558713852, -9029921876, 71541001076, -158672882224, -45300345128, 1370202238072
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 31 2013

Keywords

Comments

For each n > 0, a(p-n) == 2^(2 - 3*n)*A252355(n) (mod p), for all primes p >= 2*n+1 [Chamberland, et al., Thm. 2.3]. - L. Edson Jeffery, Dec 17 2014

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k*Binomial[n,k]*Binomial[2*n,k],{k,0,n}],{n,0,20}]
    Table[Hypergeometric2F1[-2*n, -n, 1, -1],{n,0,20}]
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n,k)*binomial(2*n,k)); \\ Michel Marcus, Jan 13 2016

Formula

Recurrence: 2*n*(2*n-1)*(7*n-10)*a(n) = -(91*n^3 - 221*n^2 + 160*n - 36)*a(n-1) - 16*(n-1)*(2*n-3)*(7*n-3)*a(n-2).
Lim sup n->infinity |a(n)|^(1/n) = 2*sqrt(2).
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 - x + 3*x^3 - 7*x^4 + 4*x^5 + 24*x^6 - 85*x^7 + 99*x^8 + 215*x^9 - 1196*x^10 + ... appears to have integer coefficients. - Peter Bala, Jan 04 2016
From Peter Bala, Apr 02 2020: (Start)
a(n) = Sum_{k = 0..floor(n/2)} (-1)^(n+k)*binomial(n,k)*binomial(n,2*k).
a(n) = hypergeom([-n, -n/2, 1/2 - n/2], [1, 1/2], 1). (End)
From Peter Bala, Feb 23 2022: (Start)
a(n) = [x^n] ((1 - x)*(1 - x^2))^n. This implies that exp( Sum_{n >= 1} a(n)*x^n/n ) has integer coefficients as suggested above.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k. [added Apr 12 2022: this was proved in 2014 by Osburn et al.; see Example 3.3]
The o.g.f. A(x) is the diagonal of the bivariate rational function 1/(1 - t*(1-x)*(1-x^2) ) and hence is an algebraic function over Q(x) by Stanley 1999, Theorem 6.33, p. 197.
Let F(x) = 1/x*Series_Reversion( x/((1-x)*(1-x^2)) ). Then A(x) = 1 + x*d/dx(Log(F(x))). (End)
a(n) = Sum_{k = 0..n} (-1)^k*binomial(n, k)*binomial(2*n+k, k)*2^(n-k). - Peter Bala, Feb 14 2024

A264772 Triangle T(n,k) = binomial(3*n - 2*k, 2*n - k), 0 <= k <= n.

Original entry on oeis.org

1, 3, 1, 15, 4, 1, 84, 21, 5, 1, 495, 120, 28, 6, 1, 3003, 715, 165, 36, 7, 1, 18564, 4368, 1001, 220, 45, 8, 1, 116280, 27132, 6188, 1365, 286, 55, 9, 1, 735471, 170544, 38760, 8568, 1820, 364, 66, 10, 1, 4686825, 1081575, 245157, 54264, 11628, 2380, 455, 78, 11, 1
Offset: 0

Views

Author

Peter Bala, Nov 24 2015

Keywords

Comments

Riordan array (f(x), x*g(x)), where g(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + ... is the o.g.f. for A001764 and f(x) = g(x)/(3 - 2*g(x)) = 1 + 3*x + 15*x^2 + 84*x^3 + 495*x^4 + ... is the o.g.f. for A005809.
The even numbered columns give the Riordan array A119301, the odd numbered columns give the Riordan array A144484. A159841 is the array formed from columns 1,4,7,10,....
More generally, if R = (R(n,k))n,k>=0 is a proper Riordan array, m is a nonnegative integer and a > b are integers then the array with (n,k)-th element R((m + 1)*n - a*k, m*n - b*k) is also a Riordan array (not necessarily proper). Here we take R as Pascal's triangle and m = a = 2, b = 1. See A092392, A264773, A264774 and A113139 for further examples.

Examples

			Triangle begins
.n\k.|......0.....1....2....3...4..5...6..7...
----------------------------------------------
..0..|      1
..1..|      3     1
..2..|     15     4    1
..3..|     84    21    5    1
..4..|    495   120   28    6   1
..5..|   3003   715  165   36   7  1
..6..|  18564  4368 1001  220  45  8  1
..7..| 116280 27132 6188 1365 286 55  9  1
...
		

Crossrefs

Cf. A005809 (column 0), A045721 (column 1), A025174 (column 2), A004319 (column 3), A236194 (column 4), A013698 (column 5). Cf. A001764, A007318, A092392, A119301 (C(3n-k,2n)), A144484 (C(3n+1-k,2n+1)), A159841 (C(3n+1,2n+k+1)), A264773, A264774.

Programs

  • Magma
    /* As triangle */ [[Binomial(3*n-2*k, n-k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
  • Maple
    A264772:= proc(n,k) binomial(3*n - 2*k, 2*n - k); end proc:
    seq(seq(A264772(n,k), k = 0..n), n = 0..10);
  • Mathematica
    Table[Binomial[3 n - 2 k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)

Formula

T(n,k) = binomial(3*n - 2*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(3*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(2*n + 1)*binomial(3*n,n)*x^n.

A268196 a(n) = Product_{k=0..n} binomial(3*k,k).

Original entry on oeis.org

1, 3, 45, 3780, 1871100, 5618913300, 104309506501200, 12129109415959536000, 8920608231265175901456000, 41809329673499408044341517200000, 1256161937180234817183361549396758000000, 243113461110708695347467432844366521953760000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[3k,k],{k,0,n}],{n,0,12}]
    FoldList[Times,Table[Binomial[3n,n],{n,0,15}]] (* Harvey P. Dale, Apr 23 2018 *)

Formula

a(n) = A^(7/6) * Gamma(1/3)^(1/3) * 3^(3*n^2/2 + 2*n + 11/36)* BarnesG(n + 4/3) * BarnesG(n + 5/3) / (exp(7/72) * 2^(n^2 + 2*n + 5/8) * Pi^(n/2 + 5/12) * BarnesG(n + 3/2) * BarnesG(n + 2)), where A = A074962 is the Glaisher-Kinkelin constant.
a(n) ~ A^(7/6) * Gamma(1/3)^(1/3) * 3^(11/36 + 2*n + 3*n^2/2) * exp(n/2 - 7/72) / (2^(n^2 + 2*n + 7/8) * Pi^(n/2 + 2/3) * n^(n/2 + 25/72)), where A = A074962 is the Glaisher-Kinkelin constant.
a(n) = A268504(n) / (A000178(n) * A098694(n)).

A004368 Binomial coefficient C(7n,n).

Original entry on oeis.org

1, 7, 91, 1330, 20475, 324632, 5245786, 85900584, 1420494075, 23667689815, 396704524216, 6681687099710, 112992892764570, 1917283000904460, 32626924340528840, 556608279578340080, 9516306085765295355, 163011740982048945441
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).
Cf. A002296.

Programs

  • Magma
    [Binomial(7*n,n): n in [0..20]]; // Vincenzo Librandi, Oct 06 2015
  • Mathematica
    Table[Binomial[7n,n],{n,0,20}] (* Harvey P. Dale, Apr 05 2014 *)
  • Maxima
    B(x):=sum(binomial(7*n,n-1)/n*x^n,n,1,30);
    taylor(x*diff(B(x),x)/B(x),x,0,10); /* Vladimir Kruchinin, Oct 05 2015 */
    
  • PARI
    a(n) = binomial(7*n,n) \\ Altug Alkan, Oct 05 2015
    

Formula

a(n) = C(7*n-1,n-1)*C(49*n^2,2)/(3*n*C(7*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
G.f.: A(x) = x*B'(x)/B(x), where B(x)+1 is g.f. of A002296. - Vladimir Kruchinin, Oct 05 2015
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 6F5(1/7,2/7,3/7,4/7,5/7,6/7; 1/6,1/3,1/2,2/3,5/6; 823543*x/46656).
E.g.f.: 6F6(1/7,2/7,3/7,4/7,5/7,6/7; 1/6,1/3,1/2,2/3,5/6,1; 823543*x/46656).
a(n) ~ sqrt(7/3)*7^(7*n)/(2*sqrt(Pi*n)*6^(6*n)). (End)
From Peter Bala, Feb 20 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 6*A(x))^6 + (7^7)*x*A(x)^7 = 0.
Sum_{n >= 1} a(n)*( x*(6*x + 7)^6/(7^7*(1 + x)^7) )^n = x. (End)
Previous Showing 31-40 of 136 results. Next