A060539
Table by antidiagonals of number of ways of choosing k items from n*k.
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 20, 15, 4, 1, 70, 84, 28, 5, 1, 252, 495, 220, 45, 6, 1, 924, 3003, 1820, 455, 66, 7, 1, 3432, 18564, 15504, 4845, 816, 91, 8, 1, 12870, 116280, 134596, 53130, 10626, 1330, 120, 9, 1, 48620, 735471, 1184040, 593775, 142506, 20475, 2024, 153, 10
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 6, 20, 70, 252, 924, 3432, ...
3, 15, 84, 495, 3003, 18564, 116280, ...
4, 28, 220, 1820, 15504, 134596, 1184040, ...
5, 45, 455, 4845, 53130, 593775, 6724520, ...
6, 66, 816, 10626, 142506, 1947792, 26978328, ...
7, 91, 1330, 20475, 324632, 5245786, 85900584, ...
-
A:= (n, k)-> binomial(n*k, k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..10); # Alois P. Heinz, Jul 28 2023
-
{ i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060539.txt", i++, " ", binomial(n*k, k))); ) } \\ Harry J. Smith, Jul 06 2009
A169958
a(n) = binomial(9*n, n).
Original entry on oeis.org
1, 9, 153, 2925, 58905, 1221759, 25827165, 553270671, 11969016345, 260887834350, 5720645481903, 126050526132804, 2788629694000605, 61902409203193230, 1378095785451705375, 30756373941461374800, 687917389635036844569, 15415916972482007401455, 346051021610256116115150
Offset: 0
A188686
Binomial transform of the sequence of binomial(3n,n).
Original entry on oeis.org
1, 4, 22, 139, 934, 6484, 45931, 329893, 2393470, 17499892, 128732992, 951674398, 7064138779, 52616241370, 393052285291, 2943582912904, 22093111508686, 166141033332448, 1251528633163264, 9442096410241438, 71333250226656784
Offset: 0
-
Table[Sum[Binomial[n,k]Binomial[3k,k],{k,0,n}],{n,0,22}]
-
makelist(sum(binomial(n,k)*binomial(3*k,k),k,0,n),n,0,20);
A004381
Binomial coefficient C(8n,n).
Original entry on oeis.org
1, 8, 120, 2024, 35960, 658008, 12271512, 231917400, 4426165368, 85113005120, 1646492110120, 32006008361808, 624668654531480, 12233149001721760, 240260199935164200, 4730523156632595024, 93343021201262177400, 1845382436487682488000
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
A117671
a(n) = binomial(3*n+1, n+1).
Original entry on oeis.org
1, 6, 35, 210, 1287, 8008, 50388, 319770, 2042975, 13123110, 84672315, 548354040, 3562467300, 23206929840, 151532656696, 991493848554, 6499270398159, 42671977361650, 280576272201225, 1847253511032930, 12176310231149295, 80347448443237920, 530707489338171600
Offset: 0
if n=0 then C(3*0+1,0+1) = C(1,1) = 1.
if n=10 then C(3*10+1,10+1) = C(31,11) = 84672315.
-
a117671 n = a258993 (2 * n + 1) n -- Reinhard Zumkeller, Jun 22 2015
-
seq(binomial(3*n+1,n+1),n=0..30); # Robert Israel, Oct 10 2017
-
Table[Binomial[3n+1,n+1],{n,0,20}] (* Harvey P. Dale, Jul 19 2011 *)
-
vector(30, n, n--; binomial(3*n+1, n+1)) \\ Altug Alkan, Nov 04 2015
Original entry on oeis.org
1, 5, 29, 176, 1093, 6885, 43796, 280600, 1807781, 11698223, 75973189, 494889092, 3231947596, 21153123932, 138712176296, 911137377456, 5993760282021, 39481335979779, 260377117268087, 1719026098532296, 11360252318843933, 75141910203168229, 497431016774189912
Offset: 0
-
A160906 := proc(n) add( A159841(n,k), k=0..n) ; end:
seq(A160906(n), n=0..20) ;
-
Table[Sum[Binomial[3*n+1, 2*n+k+1], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 25 2017 *)
-
a(n) = sum(k=0, n, binomial(3*n+1, 2*n+k+1)); \\ Michel Marcus, Oct 31 2017
-
a = lambda n: binomial(3*n+1,n)*hypergeometric([1,-n],[2*n+2],-1)
[simplify(a(n)) for n in range(21)] # Peter Luschny, May 19 2015
A234839
a(n) = Sum_{k = 0..n} (-1)^k * binomial(n,k) * binomial(2*n,k).
Original entry on oeis.org
1, -1, -1, 8, -17, -1, 116, -344, 239, 1709, -7001, 9316, 22276, -138412, 268568, 189008, -2608913, 6809417, -1814851, -45852416, 159116983, -155628353, -720492928, 3481793888, -5558713852, -9029921876, 71541001076, -158672882224, -45300345128, 1370202238072
Offset: 0
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Marc Chamberland and Karl Dilcher, A Binomial Sum Related to Wolstenholme's Theorem, J. Number Theory, Vol. 171, Issue 11 (Nov. 2009), pp. 2659-2672.
- Robert Osburn, Brundaban Sahu, and Armin Straub, Supercongruences for sporadic sequences, arXiv:1312.2195 [math.NT], 2014.
-
Table[Sum[(-1)^k*Binomial[n,k]*Binomial[2*n,k],{k,0,n}],{n,0,20}]
Table[Hypergeometric2F1[-2*n, -n, 1, -1],{n,0,20}]
-
a(n) = sum(k=0, n, (-1)^k*binomial(n,k)*binomial(2*n,k)); \\ Michel Marcus, Jan 13 2016
A264772
Triangle T(n,k) = binomial(3*n - 2*k, 2*n - k), 0 <= k <= n.
Original entry on oeis.org
1, 3, 1, 15, 4, 1, 84, 21, 5, 1, 495, 120, 28, 6, 1, 3003, 715, 165, 36, 7, 1, 18564, 4368, 1001, 220, 45, 8, 1, 116280, 27132, 6188, 1365, 286, 55, 9, 1, 735471, 170544, 38760, 8568, 1820, 364, 66, 10, 1, 4686825, 1081575, 245157, 54264, 11628, 2380, 455, 78, 11, 1
Offset: 0
Triangle begins
.n\k.|......0.....1....2....3...4..5...6..7...
----------------------------------------------
..0..| 1
..1..| 3 1
..2..| 15 4 1
..3..| 84 21 5 1
..4..| 495 120 28 6 1
..5..| 3003 715 165 36 7 1
..6..| 18564 4368 1001 220 45 8 1
..7..| 116280 27132 6188 1365 286 55 9 1
...
- Michael De Vlieger, Table of n, a(n) for n = 0..11475
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Paul Barry, On the halves of a Riordan array and their antecedents, arXiv:1906.06373 [math.CO], 2019.
- E. Lebensztayn, On the asymptotic enumeration of accessible automata, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No.3, 2010, 75-80, Section 2.
- R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics, CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
Cf.
A005809 (column 0),
A045721 (column 1),
A025174 (column 2),
A004319 (column 3),
A236194 (column 4),
A013698 (column 5). Cf.
A001764,
A007318,
A092392,
A119301 (C(3n-k,2n)),
A144484 (C(3n+1-k,2n+1)),
A159841 (C(3n+1,2n+k+1)),
A264773,
A264774.
-
/* As triangle */ [[Binomial(3*n-2*k, n-k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
-
A264772:= proc(n,k) binomial(3*n - 2*k, 2*n - k); end proc:
seq(seq(A264772(n,k), k = 0..n), n = 0..10);
-
Table[Binomial[3 n - 2 k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)
A268196
a(n) = Product_{k=0..n} binomial(3*k,k).
Original entry on oeis.org
1, 3, 45, 3780, 1871100, 5618913300, 104309506501200, 12129109415959536000, 8920608231265175901456000, 41809329673499408044341517200000, 1256161937180234817183361549396758000000, 243113461110708695347467432844366521953760000000
Offset: 0
-
Table[Product[Binomial[3k,k],{k,0,n}],{n,0,12}]
FoldList[Times,Table[Binomial[3n,n],{n,0,15}]] (* Harvey P. Dale, Apr 23 2018 *)
A004368
Binomial coefficient C(7n,n).
Original entry on oeis.org
1, 7, 91, 1330, 20475, 324632, 5245786, 85900584, 1420494075, 23667689815, 396704524216, 6681687099710, 112992892764570, 1917283000904460, 32626924340528840, 556608279578340080, 9516306085765295355, 163011740982048945441
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
-
[Binomial(7*n,n): n in [0..20]]; // Vincenzo Librandi, Oct 06 2015
-
Table[Binomial[7n,n],{n,0,20}] (* Harvey P. Dale, Apr 05 2014 *)
-
B(x):=sum(binomial(7*n,n-1)/n*x^n,n,1,30);
taylor(x*diff(B(x),x)/B(x),x,0,10); /* Vladimir Kruchinin, Oct 05 2015 */
-
a(n) = binomial(7*n,n) \\ Altug Alkan, Oct 05 2015
Comments