A025174
a(n) = binomial(3n-1, n-1).
Original entry on oeis.org
0, 1, 5, 28, 165, 1001, 6188, 38760, 245157, 1562275, 10015005, 64512240, 417225900, 2707475148, 17620076360, 114955808528, 751616304549, 4923689695575, 32308782859535, 212327989773900, 1397281501935165, 9206478467454345, 60727722660586800, 400978991944396320
Offset: 0
L.g.f.: L(x) = x + 5*x^2/2 + 28*x^3/3 + 165*x^4/4 + 1001*x^5/5 + 6188*x^6/6 + ...
where G(x) = exp(L(x)) satisfies G(x) = 1 + x*G(x)^3, and begins:
exp(L(x)) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + ... + A001764(n)*x^n + ...
- B. C. Berndt, Ramanujan's Notebooks Part I, Springer-Verlag, see Entry 14, Corollary 1, p. 71.
- Robert Israel, Table of n, a(n) for n = 0..1190
- Paul Barry, On the Central Antecedents of Integer (and Other) Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.
- D. Kruchinin and V. Kruchinin, A Generating Function for the Diagonal T2n,n in Triangles, Journal of Integer Sequence, Vol. 18 (2015), article 15.4.6.
- W. Mlotkowski and K. A. Penson, Probability distributions with binomial moments, arXiv preprint arXiv:1309.0595 [math.PR], 2013.
- Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
- Stepan Orevkov, Asymptotics of the number of lattice triangulations of rectangles of width 4 and 5, arXiv:2412.17065 [math.CO], 2024. See p. 16.
- N. J. Wildberger and Dean Rubine, A Hyper-Catalan Series Solution to Polynomial Equations, and the Geode, Amer. Math. Monthly (2025). See section 12.
Cf.
A001764 (binomial(3n,n)/(2n+1)),
A117671 (C(3n+1,n+1)),
A004319,
A005809,
A006013,
A013698,
A045721,
A117671,
A165817,
A224274,
A236194.
-
[Binomial(3*n-1,n-1): n in [0..30]]; // Vincenzo Librandi, Nov 12 2014
-
with(combinat):seq(numbcomp(3*i,i), i=0..20); # Zerinvary Lajos, Jun 16 2007
-
Table[ GegenbauerC[ n, n, 1 ]/2, {n, 0, 24} ]
Join[{0},Table[Binomial[3n-1,n-1],{n,20}]] (* Harvey P. Dale, Oct 19 2022 *)
nmax=23; CoefficientList[Series[(2+HypergeometricPFQ[{1/3,2/3},{1/2,1},27x/4])/3-1,{x,0,nmax}],x]Range[0,nmax]! (* Stefano Spezia, Dec 31 2024 *)
-
vector(30, n, n--; binomial(3*n-1, n-1)) \\ Altug Alkan, Nov 04 2015
A045721
a(n) = binomial(3*n+1,n).
Original entry on oeis.org
1, 4, 21, 120, 715, 4368, 27132, 170544, 1081575, 6906900, 44352165, 286097760, 1852482996, 12033222880, 78378960360, 511738760544, 3348108992991, 21945588357420, 144079707346575, 947309492837400, 6236646703759395
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Milan Janjic, Two Enumerative Functions
- D. Kruchinin and V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, Journal of Integer Sequence, Vol. 15 (2012), article 12.9.3.
- W. Mlotkowski and K. A. Penson, Probability distributions with binomial moments, arXiv preprint arXiv:1309.0595 [math.PR], 2013.
- Index entries for sequences related to rooted trees
Cf.
A252501,
A263134 (partial sums),
A001764,
A004319,
A005809,
A006013,
A013698,
A025174,
A117671,
A165817,
A236194.
-
[Binomial(3*n+1, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
-
[seq( binomial(3*n+1,n),n=0..40)]; # N. J. A. Sloane, Jun 09 2007
-
Table[Binomial[3 n + 1, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
-
a(n)=binomial(3*n+1,n) \\ Charles R Greathouse IV, Mar 18 2014
Simpler definition from
Ira M. Gessel, May 26 2007. This change means that most of the offsets in the comments will now need to be changed too.
A165817
Number of compositions (= ordered integer partitions) of n into 2n parts.
Original entry on oeis.org
1, 2, 10, 56, 330, 2002, 12376, 77520, 490314, 3124550, 20030010, 129024480, 834451800, 5414950296, 35240152720, 229911617056, 1503232609098, 9847379391150, 64617565719070, 424655979547800, 2794563003870330, 18412956934908690, 121455445321173600
Offset: 0
Let [1,1,1], [1,2] and [3] be the integer partitions of n=3.
Then [0,0,0,1,1,1], [0,0,0,0,1,2] and [0,0,0,0,0,3] are the corresponding partitions occupying 2*n = 6 positions.
We have to take into account the multiplicities of the parts including the multiplicities of the zeros.
Then
[0,0,0,1,1,1] --> 6!/(3!*3!) = 20
[0,0,0,0,1,2] --> 6!/(4!*1!*1!) = 30
[0,0,0,0,0,3] --> 6!/(5!*1!) = 6
and thus a(3) = 20+30+6=56.
a(2)=10, since we have 10 ordered partitions of n=2 where the parts are distributed over 2*n=4 boxes:
[0, 0, 0, 2]
[0, 0, 1, 1]
[0, 0, 2, 0]
[0, 1, 0, 1]
[0, 1, 1, 0]
[0, 2, 0, 0]
[1, 0, 0, 1]
[1, 0, 1, 0]
[1, 1, 0, 0]
[2, 0, 0, 0].
Cf.
A000079,
A001700,
A059481,
A081204,
A001764,
A004319,
A006013,
A005809,
A013698,
A025174,
A045721,
A117671,
A236194.
-
[Binomial(3*n-1, n): n in [0..30]]; // Vincenzo Librandi, Aug 07 2014
-
for n from 0 to 16 do
a[n] := 9*sqrt(3)*GAMMA(n+5/3)*GAMMA(n+4/3)*27^n/(Pi*GAMMA(2*n+3))
end do;
-
Table[Binomial[3 n - 1, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
-
vector(30, n, n--; binomial(3*n-1, n)) \\ Altug Alkan, Nov 04 2015
-
from math import comb
def A165817(n): return comb(3*n-1,n) if n else 1 # Chai Wah Wu, Oct 11 2023
-
def A165817(n):
return rising_factorial(2*n,n)/falling_factorial(n,n)
[A165817(n) for n in (0..22)] # Peter Luschny, Nov 21 2012
A004319
a(n) = binomial(3*n, n - 1).
Original entry on oeis.org
1, 6, 36, 220, 1365, 8568, 54264, 346104, 2220075, 14307150, 92561040, 600805296, 3910797436, 25518731280, 166871334960, 1093260079344, 7174519270695, 47153358767970, 310325523515700, 2044802197953900, 13488561475572645, 89067326568860640, 588671286046028640
Offset: 1
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
- Milan Janjic, Two Enumerative Functions.
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
Cf.
A000139,
A001764,
A005809,
A006013,
A236194,
A001791,
A004331,
A004343,
A004356,
A004369,
A004382.
-
A004319 := proc(n)
binomial(3*n,n-1);
end proc: # R. J. Mathar, Aug 10 2015
-
Table[Binomial[3n, n - 1], {n, 20}] (* Harvey P. Dale, Sep 21 2011 *)
-
a(n):=sum((binomial(3*i-1,2*i-1)*binomial(3*n-3*i-3,2*n-2*i-2))/(2*n-2*i-1),i,1,n-1)/2; /* Vladimir Kruchinin, May 15 2013 */
-
vector(30, n, binomial(3*n, n-1)) \\ Altug Alkan, Nov 04 2015
A013698
a(n) = binomial(3*n+2, n-1).
Original entry on oeis.org
1, 8, 55, 364, 2380, 15504, 100947, 657800, 4292145, 28048800, 183579396, 1203322288, 7898654920, 51915526432, 341643774795, 2250829575120, 14844575908435, 97997533741800, 647520696018735, 4282083008118300
Offset: 1
- Robert Israel, Table of n, a(n) for n = 1..1000
- M. S. Ravi et al., Dynamic Pole Assignment and Schubert Calculus, SIAM J. Control Optimization, 34 (1996), 813-832, esp. p. 825.
- Daniel W. Stasiuk, An Enumeration Problem for Sequences of n-ary Trees Arising from Algebraic Operads, Master's Thesis, University of Saskatchewan-Saskatoon (2018).
-
List([1..25], n-> Binomial(3*n+2, n-1)) # G. C. Greubel, Mar 21 2019
-
[Binomial(3*n+2, n-1): n in [1..25]]; // Vincenzo Librandi, Aug 10 2015
-
seq(binomial(3*n+2,n-1), n=0..30); # Robert Israel, Aug 09 2015
-
Table[Binomial[3*n+2, n-1], {n, 25}] (* Arkadiusz Wesolowski, Apr 02 2012 *)
-
first(m)=vector(m,n,binomial(3*n+2, n-1)); /* Anders Hellström, Aug 09 2015 */
-
[binomial(3*n+2, n-1) for n in (1..25)] # G. C. Greubel, Mar 21 2019
A118113
Even Fibbinary numbers + 1; also 2*Fibbinary(n) + 1.
Original entry on oeis.org
1, 3, 5, 9, 11, 17, 19, 21, 33, 35, 37, 41, 43, 65, 67, 69, 73, 75, 81, 83, 85, 129, 131, 133, 137, 139, 145, 147, 149, 161, 163, 165, 169, 171, 257, 259, 261, 265, 267, 273, 275, 277, 289, 291, 293, 297, 299, 321, 323, 325, 329, 331, 337, 339, 341, 513, 515, 517
Offset: 0
-
F:= combinat[fibonacci]:
b:= proc(n) local j;
if n=0 then 0
else for j from 2 while F(j+1)<=n do od;
b(n-F(j))+2^(j-2)
fi
end:
a:= n-> 2*b(n)+1:
seq(a(n), n=0..70); # Alois P. Heinz, Aug 03 2012
-
Select[Table[Mod[Binomial[3*k,k], k+1], {k,1200}], #>0&]
A236194
a(n) = binomial(3n+1, n-1).
Original entry on oeis.org
1, 7, 45, 286, 1820, 11628, 74613, 480700, 3108105, 20160075, 131128140, 854992152, 5586853480, 36576848168, 239877544005, 1575580702584, 10363194502115, 68248282427325, 449972009097765, 2969831763694950, 19619725782651120, 129728497393775280
Offset: 1
Second column of the triangle
A159841.
Third column of the triangle
A119301.
-
[Binomial(3*n+1,n-1): n in [1..30]];
-
Table[Binomial[3n+1, n-1], {n, 30}]
-
makelist(binomial(3*n+4,n),n,0,40); /* Emanuele Munarini, Oct 14 2014 */
-
vector(30, n, binomial(3*n+1, n-1)) \\ Altug Alkan, Nov 04 2015
-
[binomial(3*n+1,n-1) for n in range(1,31)] # G. C. Greubel, Nov 09 2022
A258993
Triangle read by rows: T(n,k) = binomial(n+k,n-k), k = 0..n-1.
Original entry on oeis.org
1, 1, 3, 1, 6, 5, 1, 10, 15, 7, 1, 15, 35, 28, 9, 1, 21, 70, 84, 45, 11, 1, 28, 126, 210, 165, 66, 13, 1, 36, 210, 462, 495, 286, 91, 15, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 55, 495, 1716, 3003, 3003, 1820, 680, 153, 19, 1, 66, 715, 3003, 6435, 8008, 6188, 3060, 969, 190, 21
Offset: 1
. n\k | 0 1 2 3 4 5 6 7 8 9 10 11
. -----+-----------------------------------------------------------
. 1 | 1
. 2 | 1 3
. 3 | 1 6 5
. 4 | 1 10 15 7
. 5 | 1 15 35 28 9
. 6 | 1 21 70 84 45 11
. 7 | 1 28 126 210 165 66 13
. 8 | 1 36 210 462 495 286 91 15
. 9 | 1 45 330 924 1287 1001 455 120 17
. 10 | 1 55 495 1716 3003 3003 1820 680 153 19
. 11 | 1 66 715 3003 6435 8008 6188 3060 969 190 21
. 12 | 1 78 1001 5005 12870 19448 18564 11628 4845 1330 231 23 .
If a diagonal of 1's is added on the right, this becomes
A085478.
T(n,k):
A000217 (k=1),
A000332 (k=2),
A000579 (k=3),
A000581 (k=4),
A001287 (k=5),
A010965 (k=6),
A010967 (k=7),
A010969 (k=8),
A010971 (k=9),
A010973 (k=10),
A010975 (k=11),
A010977 (k=12),
A010979 (k=13),
A010981 (k=14),
A010983 (k=15),
A010985 (k=16),
A010987 (k=17),
A010989 (k=18),
A010991 (k=19),
A010993 (k=20),
A010995 (k=21),
A010997 (k=22),
A010999 (k=23),
A011001 (k=24),
A017714 (k=25),
A017716 (k=26),
A017718 (k=27),
A017720 (k=28),
A017722 (k=29),
A017724 (k=30),
A017726 (k=31),
A017728 (k=32),
A017730 (k=33),
A017732 (k=34),
A017734 (k=35),
A017736 (k=36),
A017738 (k=37),
A017740 (k=38),
A017742 (k=39),
A017744 (k=40),
A017746 (k=41),
A017748 (k=42),
A017750 (k=43),
A017752 (k=44),
A017754 (k=45),
A017756 (k=46),
A017758 (k=47),
A017760 (k=48),
A017762 (k=49),
A017764 (k=50).
T(n+k,n):
A005408 (k=1),
A000384 (k=2),
A000447 (k=3),
A053134 (k=4),
A002299 (k=5),
A053135 (k=6),
A053136 (k=7),
A053137 (k=8),
A053138 (k=9),
A196789 (k=10).
-
Flat(List([1..12], n-> List([0..n-1], k-> Binomial(n+k,n-k) ))); # G. C. Greubel, Aug 01 2019
-
a258993 n k = a258993_tabl !! (n-1) !! k
a258993_row n = a258993_tabl !! (n-1)
a258993_tabl = zipWith (zipWith a007318) a094727_tabl a004736_tabl
-
[Binomial(n+k,n-k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Aug 01 2019
-
Table[Binomial[n+k,n-k], {n,1,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
-
T(n,k) = binomial(n+k,n-k);
for(n=1, 12, for(k=0,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
-
[[binomial(n+k,n-k) for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Aug 01 2019
A331322
a(n) = (3*n + 1)!/(n!)^3.
Original entry on oeis.org
1, 24, 630, 16800, 450450, 12108096, 325909584, 8779605120, 236637794250, 6380456082000, 172080900531540, 4641917845743360, 125235075213284400, 3379123922914656000, 91184624634161304000, 2460769070127233057280, 66411927755894739034170, 1792432652235221330334000
Offset: 0
-
[(n+1)^2*Binomial(3*n+1,n+1)*Catalan(n): n in [0..25]]; // G. C. Greubel, Mar 22 2022
-
a := n -> (3*n+1)!/(n!)^3: seq(a(n), n=0..17); # Or:
hypergeom([2/3, 4/3], [1], 27*x): ser := series(%, x, 20):
seq(coeff(%, x, n), n=0..17); # Or:
a := proc(n) option remember; if n=0 then 1 else 3*(9 - n^(-2))*a(n-1) fi end:
# 4th Maple program:
W:=proc(x)sqrt(3)*MeijerG([[], [0, 0]], [[1/3, -1/3], []], x/27)/(18*Pi);end;
a:=proc(n) round(evalf[32](int(x^n*W(x),x=0..27)));end;
seq(a(n),n=0..17);
# Karol A. Penson, Jul 28 2023
-
Table[(3*n+1)*Binomial[3*n,n]*Binomial[2*n,n], {n,0,25}] (* G. C. Greubel, Mar 22 2022 *)
-
[(3*n+1)*binomial(2*n,n)*binomial(3*n,n) for n in (0..25)] # G. C. Greubel, Mar 22 2022
A374440
Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with boundary conditions: if k = 0 or k = 2 then T = 1; if k = 1 then T = n - 1.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 3, 1, 1, 1, 1, 4, 1, 3, 2, 0, 1, 5, 1, 6, 3, 1, 1, 1, 6, 1, 10, 4, 4, 3, 0, 1, 7, 1, 15, 5, 10, 6, 1, 1, 1, 8, 1, 21, 6, 20, 10, 5, 4, 0, 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1, 1, 10, 1, 36, 8, 56, 21, 35, 20, 6, 5, 0
Offset: 0
Triangle starts:
[ 0] 1;
[ 1] 1, 0;
[ 2] 1, 1, 1;
[ 3] 1, 2, 1, 0;
[ 4] 1, 3, 1, 1, 1;
[ 5] 1, 4, 1, 3, 2, 0;
[ 6] 1, 5, 1, 6, 3, 1, 1;
[ 7] 1, 6, 1, 10, 4, 4, 3, 0;
[ 8] 1, 7, 1, 15, 5, 10, 6, 1, 1;
[ 9] 1, 8, 1, 21, 6, 20, 10, 5, 4, 0;
[10] 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1;
Cf.
A000032 (Lucas),
A001611 (even sums, Fibonacci + 1),
A000071 (odd sums, Fibonacci - 1),
A001911 (alternating sums, Fibonacci(n+3) - 2),
A025560 (row lcm),
A073028 (row max),
A117671 &
A025174 (central terms),
A057979 (subdiagonal),
A000217 (column 3).
-
T := proc(n, k) option remember; if k = 0 or k = 2 then 1 elif k > n then 0
elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end:
seq(seq(T(n, k), k = 0..n), n = 0..9);
T := (n, k) -> ifelse(k = 0, 1, binomial(n - floor(k/2), ceil(k/2)) -
binomial(n - ceil((k + irem(k + 1, 2))/2), floor(k/2))):
Showing 1-10 of 12 results.
Comments