cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 119 results. Next

A272285 Primes of the form 43*n^2 - 537*n + 2971 in order of increasing nonnegative values of n.

Original entry on oeis.org

2971, 2477, 2069, 1747, 1511, 1361, 1297, 1319, 1427, 1621, 1901, 2267, 2719, 3257, 3881, 4591, 5387, 6269, 7237, 8291, 9431, 10657, 11969, 13367, 14851, 16421, 18077, 19819, 21647, 23561, 25561, 27647, 29819, 32077, 34421, 39367, 41969, 44657, 47431, 50291
Offset: 1

Views

Author

Robert Price, Apr 24 2016

Keywords

Examples

			1511 is in this sequence since 43*4^2 - 537*4 + 2971 = 688-2148+2971 = 1511 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[43n^2 - 537n + 2971, PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(p=43*n^2 - 537*n + 2971), print1(p, ", "))); \\ Altug Alkan, Apr 24 2016

A272284 Numbers n such that 43*n^2 - 537*n + 2971 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 55, 56, 57, 60, 64, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81
Offset: 1

Views

Author

Robert Price, Apr 24 2016

Keywords

Comments

35 is the smallest number not in this sequence.

Examples

			4 is in this sequence since 43*4^2 - 537*4 + 2971 = 688-2148+2971 = 1511 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[43#^2 - 537# + 2971] &]
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(43*n^2 - 537*n + 2971), print1(n, ", "))); \\ Altug Alkan, Apr 24 2016

A097823 Numbers n such that n^2+n+41 (Euler's "prime generating polynomial") is not squarefree.

Original entry on oeis.org

40, 603, 798, 890, 917, 1245, 1253, 1318, 1640, 1651, 1721, 2010, 2069, 2251, 2452, 2606, 2649, 3094, 3099, 3321, 3402, 3527, 3607, 4123, 4239, 4301, 4819, 4943, 5002, 5083, 5308, 5372, 5425, 5736, 5790, 5930, 5958, 5998, 6150, 6416, 6511, 6683, 6764
Offset: 1

Views

Author

Hugo Pfoertner, Aug 26 2004

Keywords

Examples

			a(1)=40: p(40)=40^2+40+41=1681=41^2, a(2)=603: p(603)=364253=197*43^2, a(11)=1721: p(1721)=2963603=43*41^3, a(68)=10428: p(10428)=108753653=743^2*197, a(91)=14144: p(14144)=200066921=47^4*41.
		

Crossrefs

Cf. A013929 n is not squarefree, A002837 n such that n^2-n+41 is prime, A007634 n such that n^2+n+41 is composite, A005846 primes of form n^2+n+41, A097822 n^2+n+41 has more than 2 prime factors.

Programs

  • Mathematica
    Select[Range[10000],!SquareFreeQ[#^2+#+41]&] (* Harvey P. Dale, Nov 06 2011 *)

A060566 a(n) = n^2 - 79*n + 1601.

Original entry on oeis.org

1601, 1523, 1447, 1373, 1301, 1231, 1163, 1097, 1033, 971, 911, 853, 797, 743, 691, 641, 593, 547, 503, 461, 421, 383, 347, 313, 281, 251, 223, 197, 173, 151, 131, 113, 97, 83, 71, 61, 53, 47, 43, 41, 41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601, 1681
Offset: 0

Views

Author

Jason Earls, Apr 11 2001

Keywords

Comments

a(n) is prime for 0 <= n <= 79. a(80) = 1681 = 41^2.
More than the usual number of terms are shown in order to display the initial 80 primes.
First 80 prime entries are palindromically distributed because a(n) = P(x) = x^2 + x + 41, with x = n - 40 and we observe that P(x) generates primes (A005846) for x = 0 through 39, along with the fact that P(-x) = P(x-1). - Lekraj Beedassy, Apr 24 2006

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 6.
  • C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Dover Publications, NY, 1966, p. 37, 147.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 115.

Crossrefs

Programs

Formula

From Vincenzo Librandi, Feb 27 2017: (Start)
G.f.: (1601 - 3280*x + 1681*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = (n-40)^2 + (n-40) + 41. - Miquel Cerda, Jul 10 2017
E.g.f.: exp(x)*(1601 - 78*x + x^2). - Elmo R. Oliveira, Feb 09 2025

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 16 2007
a(125) in b-file corrected by Andrew Howroyd, Feb 21 2018

A145293 a(n) is the smallest nonnegative x such that the Euler polynomial x^2 + x + 41 has exactly n distinct prime proper divisors.

Original entry on oeis.org

0, 41, 420, 2911, 38913, 707864, 6618260, 78776990, 725005500
Offset: 1

Views

Author

Artur Jasinski, Oct 07 2008

Keywords

Comments

The Euler polynomial gives primes for consecutive x from 0 to 39.
For numbers x for which x^2 + x + 41 is not prime, see A007634.
For composite numbers of the form x^2 + x + 41, see A145292.

Examples

			a(1)=0 because when x=0 then x^2+x+41=41 (1 distinct prime divisor);
a(2)=41 because when x=41 then x^2+x+41=1763=41*43 (2 distinct prime divisors);
a(3)=420 because when x=420 then x^2+x+41=176861=47*53*71 (3 distinct prime divisors);
a(4)=2911 because when x=2911 then x^2+x+41=8476873=41*47*53*83 (4 distinct prime divisors);
a(5)=38913 because when x=38913 then x^2+x+41=1514260523=43*47*61*71*173 (5 distinct prime divisors);
a(6)=707864 because when x=707864 then x^2+x+41=501072150401=41*43*47*53*71*1607 (6 distinct prime divisors);
a(7)=6618260 because when x=6618260 then x^2+x+41=43801372045901=41*43*47*61*83*131*797 (7 distinct prime divisors);
a(8)=78776990 because when x=78776990 then x^2+x+41=6205814232237131=41*43*61*71*97*131*167*383 (8 distinct prime divisors).
a(9)=725005500: a(9)^2 + a(9) + 41 = 525632975755255541 = 41*43*47*53*61*71*151*397*461. - _Hugo Pfoertner_, Mar 05 2018
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[x = 1; While[Length[FactorInteger[x^2 + x + 41]] < k - 1, x++ ]; AppendTo[a, x]; Print[x], {k, 2, 10}]; a

Extensions

Corrected and edited, a(8) added by Zak Seidov, Jan 31 2016
Example for a(8) corrected by Hugo Pfoertner, Mar 02 2018
a(9) from Hugo Pfoertner, Mar 05 2018

A272401 Primes of the form abs(3n^3 - 183n^2 + 3318n - 18757) in order of increasing nonnegative n.

Original entry on oeis.org

18757, 15619, 12829, 10369, 8221, 6367, 4789, 3469, 2389, 1531, 877, 409, 109, 41, 59, 37, 229, 499, 829, 1201, 1597, 1999, 2389, 2749, 3061, 3307, 3469, 3529, 3469, 3271, 2917, 2389, 1669, 739, 419, 1823, 3491, 5441, 7691, 10259, 13163, 16421, 20051, 24071
Offset: 1

Views

Author

Robert Price, Apr 28 2016

Keywords

Examples

			8221 is in this sequence since abs(3*4^3 - 183*4^2 + 3318*4 - 18757) = abs(192-2928+13272-18757) = 8221 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[3n^3 - 183n^2 + 3318n - 18757 , PrimeQ[#] &]

A117530 Triangle read by rows: T(n,k) = k^2 - k + prime(n), 1<=k<=n.

Original entry on oeis.org

2, 3, 5, 5, 7, 11, 7, 9, 13, 19, 11, 13, 17, 23, 31, 13, 15, 19, 25, 33, 43, 17, 19, 23, 29, 37, 47, 59, 19, 21, 25, 31, 39, 49, 61, 75, 23, 25, 29, 35, 43, 53, 65, 79, 95, 29, 31, 35, 41, 49, 59, 71, 85, 101, 119, 31, 33, 37, 43, 51, 61, 73, 87, 103, 121, 141, 37, 39, 43, 49, 57
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 25 2006

Keywords

Comments

A117531 gives the number of primes in the n-th row;
if T(n,1) is a Lucky Number of Euler then A117531(n)=n, see A014556.

Examples

			T(5,k)=A048058(k)=A048059(k), 1<=k<=5: T(5,1)=A014556(4)=11;
T(7,k)=A007635(k), 1<=k<=7: T(7,1)=A014556(5)=17;
T(13,k)=A005846(k), 1<=k<=13: T(13,1)=A014556(6)=41.
		

Crossrefs

Programs

Formula

T(n,1) = A000040(k).
T(n,2) = A052147(k) for k>1.
For 1

A145294 Smallest x >= 0 such that the Euler polynomial x^2 + x + 41 has a prime divisor of multiplicity n.

Original entry on oeis.org

0, 40, 1721, 14144, 2294005, 326924482, 6386359423, 1341160319494, 149759650255065, 1167478867440605, 243422399538851918, 9662500171353620019, 122479951673184550424, 12148820281768361731597, 177497315692809432279207, 11767210525408975519141638
Offset: 1

Author

Artur Jasinski, Oct 07 2008

Keywords

Comments

The Euler polynomial gives primes for consecutive x from 0 to 39.
For numbers x for which x^2 + x + 41 is not prime, see A007634.
For composite numbers of the form x^2 + x + 41, see A145292.
For the smallest x such that polynomial x^2 + x + 41 has exactly n distinct prime divisors, see A145293.
Sequence interpreted as a(n)^2 + a(n) + 41 having a prime divisor with multiplicity that is exactly n. - Bert Dobbelaere, Jan 22 2019

Examples

			a(2)=40 because when x=40 then x^2 + x + 41 = 1681 = 41^2;
a(3)=1721 because when x=1721 then x^2 + x + 41 = 2963603 = 43*41^3;
a(4)=14144 because when x=14144 then x^2 + x + 41 = 200066921 = 41*47^4;
a(5)=2294005 because when x=2294005 then x^2 + x + 41 = 5262461234071 = 35797*43^5.
a(6)=326924482: a(6)^2 + a(6) + 41 = 106879617257892847 = 9915343 * 47^6. - _Hugo Pfoertner_, Mar 08 2018
		

Crossrefs

Extensions

Title changed, a(1) and a(6) from Hugo Pfoertner, Mar 08 2018
More terms from Bert Dobbelaere, Jan 22 2019

A272118 Numbers k such that abs(6*k^2 - 342*k + 4903) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 61, 62, 64, 66, 67, 68, 69, 71, 72
Offset: 1

Author

Robert Price, Apr 20 2016

Keywords

Examples

			4 is in this sequence since 6*4^2 - 342*4 + 4903 = 96-1368+4903 = 3631 is prime.
		

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[6*#^2 - 342*# + 4903] &]
  • PARI
    isok(n) = isprime(abs(6*n^2 - 342*n + 4903)); \\ Michel Marcus, Apr 21 2016

A272302 Nonnegative numbers n such that abs(3n^3 - 183n^2 + 3318n - 18757) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 53, 56, 57, 59, 60, 62, 63, 65, 66, 69, 70, 74, 79, 80, 81, 82, 85
Offset: 1

Author

Robert Price, Apr 28 2016

Keywords

Comments

47 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(3*4^3 - 183*4^2 + 3318*4 - 18757) = abs(192-2928+13272-18757) = 8221 is prime.
		

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[3#^3 - 183#^2 + 3318# - 18757 ] &]
  • PARI
    is(n)=isprime(abs(3*n^2-183*n^2+3318*n-18757)) \\ Charles R Greathouse IV, Feb 17 2017
Previous Showing 21-30 of 119 results. Next