A059861
a(n) = Product_{i=2..n} (prime(i) - 2).
Original entry on oeis.org
1, 1, 3, 15, 135, 1485, 22275, 378675, 7952175, 214708725, 6226553025, 217929355875, 8499244879125, 348469040044125, 15681106801985625, 799736446901266875, 45584977473372211875, 2689513670928960500625
Offset: 1
n=4, a(4) = 1*(3-2)*(5-2)*(7-2) = 15. 48 first terms of A049296 give one complete period of dRRS[210], in which 15 d=2, 15 d=4 and 18 larger differences occur. For n=1, 2, ..., 5 in the periods of length {1, 2, 8, 48, 480, ...} [see A005867] the number of d=2 and also d=4 differences is {1, 1, 3, 15, 135, ..}
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
- R. K. Guy, Unsolved Problems in Number Theory, Sections A8, A1.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
- G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954.
- A.H.M. Smeets, Table of n, a(n) for n = 1..100
- Steven Brown, Distance between consecutive elements of the multiplicative group of integers modulo n, arXiv:2311.06873 [math.NT], 2023. See Table 1 p. 25.
- C. K. Caldwell, Prime k-tuple Conjecture
- Steven R. Finch, Hardy-Littlewood Constants [Broken link]
- Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]
- G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- G. Polya, Heuristic reasoning in the theory of numbers, Am. Math. Monthly, 66 (1959), 375-384.
-
Table[ Det[ DiagonalMatrix[ Table[ Prime[i-1] - 2, {i, 2, n} ] ] + 1 ], {n, 2, 20} ] (* Alexander Adamchuk, May 21 2006 *)
Table[Product[Prime@k - 2, {k, 2, n}], {n, 1, 18}] (* Harlan J. Brothers, Jul 02 2018 *)
a[1] = 1; a[n_] := a[n] = a[n - 1] (Prime[n] - 2);
Table[a[n], {n, 18}] (* Harlan J. Brothers, Jul 02 2018 *)
Join[{1},FoldList[Times,Prime[Range[2,20]]-2]] (* Harvey P. Dale, Apr 19 2023 *)
-
a(n) = prod(i=2, n, prime(i)-2); \\ Michel Marcus, Apr 16 2017
A048863
Number of nonprimes (1 and composites) in the reduced residue system of n-th primorial number (A002110).
Original entry on oeis.org
1, 1, 1, 1, 6, 142, 2518, 49836, 1012859, 24211838, 721500294, 22627459401, 844130935668, 34729870646918, 1491483322755274, 69890000837179157, 3692723747920861125, 217158823263305180123, 13182405032836651359192, 879055475442725460400606
Offset: 0
For n = 3, the 3rd primorial is 30, phi(30) = 8, a(3) = 1 since 1 is nonprime. See A048597.
For n = 4, the 4th primorial is 210, the size of its reduced residue system (RRS) is 48 of which 6 are either composite numbers or 1: {1, 121, 143, 169, 187, 209}.
-
Table[Function[P, EulerPhi@ P - # &[PrimePi@ P - n]]@ Product[Prime@ i, {i, n}], {n, 0, 12}] (* Michael De Vlieger, May 08 2017 *)
a(18)-a(19) calculated using Kim Walisch's primecount and added by
Amiram Eldar, Sep 03 2024
A281890
Square array A(n,k): number of integers having prime(n) as k-th factor when written as product of primes in nondecreasing order, in any interval of primorial(n)^k positive integers.
Original entry on oeis.org
1, 1, 1, 1, 5, 2, 1, 19, 62, 8, 1, 65, 1322, 1976, 48, 1, 211, 24182, 318392, 140496, 480, 1, 665, 408842, 42729464, 260656752, 19373280, 5760, 1, 2059, 6609302, 5208402488, 395975417424, 485262187680, 4125121920, 92160, 1, 6305, 103999562, 600582229496
Offset: 1
Prime(2)=3 occurs as second least factor five times in the prime factorizations of every interval of 36=Primorial(2)^2 positive integers. See A014673. So A(2,2) = 5.
A079474 re-read as a square array gives values of primorial(n)^k =
A002110(n)^k.
The values in the body of the factorization table described in the author's comments are in the irregular array
A027746.
A286941
Irregular triangle read by rows: the n-th row corresponds to the totatives of the n-th primorial, A002110(n).
Original entry on oeis.org
1, 1, 5, 1, 7, 11, 13, 17, 19, 23, 29, 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209
Offset: 1
The triangle starts
1;
1, 5;
1, 7, 11, 13, 17, 19, 23, 29;
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209;
Cf.
A002110,
A005867,
A048862,
A057588,
A279864,
A286941,
A286942,
A309497,
A038110,
A058250,
A329815.
-
Table[Function[P, Select[Range@ P, CoprimeQ[#, P] &]]@ Product[Prime@ i, {i, n}], {n, 4}] // Flatten (* Michael De Vlieger, May 18 2017 *)
-
row(n) = my(P=factorback(primes(n))); select(x->(gcd(x, P) == 1), [1..P]); \\ Michel Marcus, Jun 02 2020
A053144
Cototient of the n-th primorial number.
Original entry on oeis.org
1, 4, 22, 162, 1830, 24270, 418350, 8040810, 186597510, 5447823150, 169904387730, 6317118448410, 260105476071210, 11228680258518030, 529602053223499410, 28154196550210460730, 1665532558389396767070
Offset: 1
In the reduced residue system of q(4) = 2*3*5*7 - 210 the number of coprimes to 210 is 48, while a(4) = 210 - 48 = 162 is the number of values divisible by one of the prime factors of q(4).
-
Abs[Table[ Total[Table[(-1)^(k + 1)* Total[Apply[Times, Subsets[Table[Prime[n], {n, 1, m}], {k}], 2]], {k, 0, m - 1}]], {m, 1, 22}]] (* Geoffrey Critzer, Apr 08 2010 *)
Array[# - EulerPhi@ # &@ Product[Prime@ i, {i, #}] &, 17] (* Michael De Vlieger, Feb 17 2019 *)
-
a(n) = prod(k=1, n, prime(k)) - prod(k=1, n, prime(k)-1); \\ Michel Marcus, Feb 08 2019
A070918
Triangle of T(n,k) coefficients of polynomials with first n prime numbers as roots.
Original entry on oeis.org
1, -2, 1, 6, -5, 1, -30, 31, -10, 1, 210, -247, 101, -17, 1, -2310, 2927, -1358, 288, -28, 1, 30030, -40361, 20581, -5102, 652, -41, 1, -510510, 716167, -390238, 107315, -16186, 1349, -58, 1, 9699690, -14117683, 8130689, -2429223, 414849, -41817, 2451, -77, 1
Offset: 0
Row 4 of this sequence is 210, -247, 101, -17, 1 because (x-prime(1))(x-prime(2))(x-prime(3))(x-prime(4)) = (x-2)(x-3)(x-5)(x-7) = x^4 - 17*x^3 + 101*x^2 - 247*x + 210.
Triangle begins:
1;
-2, 1;
6, -5, 1;
-30, 31, -10, 1;
210, -247, 101, -17, 1;
-2310, 2927, -1358, 288, -28, 1;
30030, -40361, 20581, -5102, 652, -41, 1;
-510510, 716167, -390238, 107315, -16186, 1349, -58, 1;
...
Cf.
A008275 (Stirling numbers of first kind).
Cf.
A005867 (absolute values of row sums).
Cf.
A054640 (sum of absolute values of terms in rows).
-
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(mul(x-ithprime(i), i=1..n)):
seq(T(n), n=0..10); # Alois P. Heinz, Aug 18 2019
-
Table[CoefficientList[Expand[Times@@(x-Prime[Range[n]])],x],{n,0,10}]// Flatten (* Harvey P. Dale, Feb 12 2020 *)
-
p=1; for(k=1,10,p=p*(x-prime(k)); for(n=0,k,print1(polcoeff(p,n),",")))
A059865
Product_{i=4..n} (prime(i) - 6).
Original entry on oeis.org
1, 1, 1, 1, 5, 35, 385, 5005, 85085, 1956955, 48923875, 1516640125, 53082404375, 1964048961875, 80526007436875, 3784722349533125, 200590284525255625, 11032465648889059375, 672980404582232621875, 43743726297845120421875
Offset: 1
a(7) = (prime(4)-6) * (prime(5)-6) * (prime(6)-6) * (prime(7)-6) = 1 * 5* 7 *11 = 385
Also in one period of dRRS with 2,6,30,210,2310,... modulus [A002110(n)] 1,2,8,48,480,... differences occur [A005867(n)]. The number of X42424Y residue-difference-patterns are 0,1,1,1,5,... respectively starting at suitable residues coprime to A002110(n).
- See A059862 for references.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
A078456
Number of numbers less than prime(1)*...*prime(n) having exactly one prime factor among (prime(1),...,prime(n)) where prime(n) is the n-th prime.
Original entry on oeis.org
1, 3, 14, 92, 968, 12096, 199296, 3679488, 82607616, 2349508608, 71507128320, 2604912721920, 105300128563200, 4466750187110400, 207324589680230400, 10866166392736972800, 634672612705724006400, 38337584554108256256000
Offset: 1
a(2)=3 since 2*3=6 and 2,3,4 have 1 prime factor among (2,3)
3 1 1 1 1 ...
1 5 1 1 1 ...
1 1 7 1 1 ...
1 1 1 11 1 ...
1 1 1 1 13 ...
and so a(2) = 3, a(3) = 3*5 - 1*1 = 14, a(4) = 3*5*7 + 1*1*1 + 1*1*1 - 7*1*1 - 5*1*1 - 3*1*1 = 92, etc.
-
Table[ Det[ DiagonalMatrix[ Table[ Prime[i+1]-1, {i, 1, n-1} ] ] + 1 ], {n, 1, 20} ] (* Alexander Adamchuk, Jun 02 2006 *)
-
a(n)=sum(k=1,prod(i=1,n, prime(i)),if(isprime(gcd(k,prod(i=1,n, prime(i)))),1,0))
-
a(n) = matdet(matrix(n-1, n-1, j, k, if (j==k, prime(j+1), 1))); \\ after Mathematica; Michel Marcus, Oct 02 2016
A101301
The sum of the first n primes, minus n.
Original entry on oeis.org
1, 3, 7, 13, 23, 35, 51, 69, 91, 119, 149, 185, 225, 267, 313, 365, 423, 483, 549, 619, 691, 769, 851, 939, 1035, 1135, 1237, 1343, 1451, 1563, 1689, 1819, 1955, 2093, 2241, 2391, 2547, 2709, 2875, 3047, 3225, 3405, 3595, 3787, 3983, 4181, 4391, 4613, 4839
Offset: 1
-
a101301 n = a101301_list !! (n-1)
a101301_list = scanl1 (+) a006093_list
-- Reinhard Zumkeller, May 01 2013
-
seq((sum(phi(ithprime(x)),k=1..n)),n=1..100);
-
f[n_]:=Plus@@Prime[Range[n]]-n; Table[f[n],{n,1,50}] (* Enrique Pérez Herrero, Jun 10 2012 *)
-
a(n)=my(s);forprime(p=2,prime(n),s+=p); s-n \\ Charles R Greathouse IV, Oct 31 2013
-
\\ See links.
A309497
Irregular triangle read by rows: T(n,k) = A060753(n)*k-A038110(n)*A286941(n,k).
Original entry on oeis.org
0, 1, 2, 1, 11, 2, 1, 8, 7, 14, 13, 4, 27, -18, 1, 4, 23, 26, 13, 32, 19, 22, 41, 44, 31, 18, 37, 24, 27, 46, 33, 36, 23, -6, -3, 16, 19, 38, 41, 12, -1, 2, -11, 8, 11, -2, 17, 4, -9, -6, 13, 16, 3, 22, 9, 12, 31, 34, 53, 8
Offset: 0
The triangle starts:
row1: 0;
row2: 1;
row3: 2, 1;
row4: 11, 2, 1, 8, 7, 14, 13, 4;
row5: 27, -18, 1, 4, 23, 26, 13, 32, 19, 22, 41, 44, 31, 18, 37, 24, 27, 46, 33, 36, 23, -6, -3, 16, 19, 38, 41, 12, -1, 2, -11, 8, 11, -2, 17, 4, -9, -6, 13, 16, 3, 22, 9, 12, 31, 34, 53, 8;
Cf.
A058250,
A005867,
A002110,
A038110,
A038111,
A060753,
A286941,
A058262,
A161527,
A083140,
A308121.
-
row[0] = 0; row[n_] := -(v = Numerator[Product[1 - 1/Prime[i], {i, 1, n}] / Prime[n]] * Select[Range[(p = Product[Prime[i], {i, 1, n}])], CoprimeQ[p, #] &]) + Denominator[Product[((pr = Prime[i]) - 1)/pr, {i, 1, n}]] * Range[Length[v]]; Table[row[n], {n, 0, 4}] // Flatten (* Amiram Eldar, Aug 10 2019 *)
Comments