A062193
Fourth (unsigned) column sequence of triangle A062139 (generalized a=2 Laguerre).
Original entry on oeis.org
1, 24, 420, 6720, 105840, 1693440, 27941760, 479001600, 8562153600, 159826867200, 3116623910400, 63465795993600, 1348648164864000, 29877743960064000, 689322235650048000, 16543733655601152000, 412559358036553728000, 10678006913887272960000, 286526518855975157760000
Offset: 0
-
[Factorial(n+3)*binomial(n+5, 5)/Factorial(3): n in [0..30]]; // G. C. Greubel, May 11 2018
-
With[{nn=20},CoefficientList[Series[(1+15*x+30*x^2+10*x^3)/(1-x)^9, {x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 02 2018 *)
-
{ f=2; for (n=0, 100, f*=n + 3; write("b062193.txt", n, " ", f*binomial(n + 5, 5)/6) ) } \\ Harry J. Smith, Aug 02 2009
-
my(x='x+O('x^30)); Vec(serlaplace((1+15*x+30*x^2+10*x^3)/(1-x)^9)) \\ G. C. Greubel, May 11 2018
-
[binomial(n,5)*factorial (n-2)/6 for n in range(5, 21)] # Zerinvary Lajos, Jul 07 2009
A324224
Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices divided by |k|!; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
Original entry on oeis.org
1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 6, 18, 24, 18, 6, 1, 1, 8, 36, 96, 120, 96, 36, 8, 1, 1, 10, 60, 240, 600, 720, 600, 240, 60, 10, 1, 1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 35280, 15120, 4200, 840, 126, 14, 1
Offset: 1
Triangle T(n,k) begins:
: 1 ;
: 1, 2, 1 ;
: 1, 4, 6, 4, 1 ;
: 1, 6, 18, 24, 18, 6, 1 ;
: 1, 8, 36, 96, 120, 96, 36, 8, 1 ;
: 1, 10, 60, 240, 600, 720, 600, 240, 60, 10, 1 ;
: 1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1 ;
-
b:= proc(s, c) option remember; (n-> `if`(n=0, c,
add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i)/abs(i)!, i=1-n..n-1))(b({$1..n}, 0)):
seq(T(n), n=1..8);
# second Maple program:
egf:= k-> (t-> x^t/t!*hypergeom([2, t], [t+1], x))(abs(k)+1):
T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=1-n..n-1), n=1..8);
# third Maple program:
T:= (n, k)-> (t-> `if`(t
-
T[n_, k_] := With[{t = Abs[k]}, If[tJean-François Alcover, Mar 25 2021, after 3rd Maple program *)
A062194
Fifth column sequence of triangle A062139 (generalized a=2 Laguerre).
Original entry on oeis.org
1, 35, 840, 17640, 352800, 6985440, 139708800, 2854051200, 59935075200, 1298593296000, 29088489830400, 674324082432000, 16183777978368000, 402104637462528000, 10339833534750720000, 275039572024369152000
Offset: 0
-
List([0..15],n->Factorial(n+4)*Binomial(n+6,6)/Factorial(4)); # Muniru A Asiru, Jul 01 2018
-
[Factorial(n+4)*Binomial(n+6, 6)/Factorial(4): n in [0..20]]; // G. C. Greubel, May 12 2018
-
Table[(n+4)!*Binomial[n+6,6]/4!, {n, 0, 20}] (* G. C. Greubel, May 12 2018 *)
-
{ f=6; for (n=0, 100, f*=n + 4; write("b062194.txt", n, " ", f*binomial(n + 6, 6)/24) ) } \\ Harry J. Smith, Aug 02 2009
-
[binomial(n,6)*factorial (n-2)/factorial (4) for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009
A138770
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} such that there are exactly k entries between the entries 1 and 2 (n>=2, 0<=k<=n-2).
Original entry on oeis.org
2, 4, 2, 12, 8, 4, 48, 36, 24, 12, 240, 192, 144, 96, 48, 1440, 1200, 960, 720, 480, 240, 10080, 8640, 7200, 5760, 4320, 2880, 1440, 80640, 70560, 60480, 50400, 40320, 30240, 20160, 10080, 725760, 645120, 564480, 483840, 403200, 322560, 241920, 161280, 80640
Offset: 2
T(4,2)=4 because we have 1342, 1432, 2341 and 2431.
Triangle starts:
2;
4,2;
12,8,4;
48,36,24,12;
240,192,144,96,48;
...
-
T:=proc(n,k) if n-2 < k then 0 else (2*n-2*k-2)*factorial(n-2) end if end proc; for n from 2 to 10 do seq(T(n, k),k=0..n-2) end do; # yields sequence in triangular form
-
Table[Table[2 (n - r) (n - 2)!, {r, 1, n - 1}], {n, 1, 10}] // Grid (* Geoffrey Critzer, Dec 19 2009 *)
A167568
A triangle related to the GF(z) formulas of the rows of the ED2 array A167560.
Original entry on oeis.org
1, 0, 2, 2, -2, 6, 0, 16, -16, 24, 24, -48, 144, -120, 120, 0, 432, -864, 1392, -960, 720, 720, -2160, 8208, -12816, 14448, -8400, 5040, 0, 23040, -69120, 149760, -184320, 161280, -80640, 40320, 40320, -161280, 760320, -1716480, 2684160, -2695680
Offset: 1
Row 1: GF(z) = 1/(1-z).
Row 2: GF(z) = 2/(1-z)^2.
Row 3: GF(z) = (2*z^2 - 2*z + 6)/(1-z)^3.
Row 4: GF(z) = (0*z^3 + 16*z^2 - 16*z + 24)/(1-z)^4.
Row 5: GF(z) = (24*z^4 - 48*z^3 + 144*z^2 - 120*z + 120)/(1-z)^5.
Row 6: GF(z) = (432*z^4 - 864*z^3 + 1392*z^2 - 960*z + 720)/(1-z)^6.
Row 7: GF(z) = (720*z^6 - 2160*z^5 + 8208*z^4 - 12816*z^3 + 14448*z^2 - 8400*z + 5040)/(1-z)^7.
Row 8: GF(z) = (0*z^7 + 23040*z^6 - 69120*z^5 + 149760*z^4 - 184320*z^3 + 161280*z^2 - 80640*z + 40320)/(1-z)^8.
Row 9: GF(z) = (40320*z^8 - 161280*z^7 + 760320*z^6 - 1716480*z^5 + 2684160*z^4 - 2695680*z^3 + 1935360*z^2 - 846720*z + 362880)/(1-z)^9.
Row 10: GF(z) = (0*z^9 + 2016000*z^8 - 8064000*z^7 + 22464000*z^6 - 39168000*z^5 + 48360960*z^4 - 40849920*z^3 + 24917760*z^2 - 9676800*z + 3628800)/(1-z)^10.
A005359 equals the first left hand column.
A317527
Number of edges in the n-alternating group graph.
Original entry on oeis.org
0, 0, 3, 24, 180, 1440, 12600, 120960, 1270080, 14515200, 179625600, 2395008000, 34248614400, 523069747200, 8499883392000, 146459529216000, 2667655710720000, 51218989645824000, 1033983353475072000, 21896118073589760000, 485363950631239680000, 11240007277776076800000
Offset: 1
-
[0] cat [Factorial(n)*(n-2)/2: n in [2..25]]; // Vincenzo Librandi, Jul 31 2018
-
Join[{0}, Table[n! (n - 2)/2, {n, 2, 20}]]
CoefficientList[Series[x^2/(2 (-1 + x)^2), {x, 0, 19}], x] Range[20]!
A062195
Sixth (unsigned) column sequence of triangle A062139 (generalized a=2 Laguerre).
Original entry on oeis.org
1, 48, 1512, 40320, 997920, 23950080, 570810240, 13699445760, 333923990400, 8310997094400, 211930425907200, 5548723878297600, 149353151057510400, 4135933413900288000, 117874102296158208000
Offset: 0
-
[Factorial(n+5)*Binomial(n+7, 7)/Factorial(5): n in [0..20]]; // G. C. Greubel, May 12 2018
-
Table[(n+5)!*Binomial[n+7, 7]/5!, {n, 0, 20}] (* G. C. Greubel, May 12 2018 *)
-
{ f=24; for (n=0, 100, f*=n + 5; write("b062195.txt", n, " ", f*binomial(n + 7, 7)/120) ) } \\ Harry J. Smith, Aug 02 2009
A193474
Table read by rows: The coefficients of the polynomials P(n, x) = Sum{k=0..n} Sum{j=0..k} (-1)^j * 2^(-k) * binomial(k, j) * (k-2*j)^n * x^(n-k).
Original entry on oeis.org
1, 1, 0, 2, 0, 0, 6, 0, 1, 0, 24, 0, 8, 0, 0, 120, 0, 60, 0, 1, 0, 720, 0, 480, 0, 32, 0, 0, 5040, 0, 4200, 0, 546, 0, 1, 0, 40320, 0, 40320, 0, 8064, 0, 128, 0, 0, 362880, 0, 423360, 0, 115920, 0, 4920, 0, 1, 0, 3628800, 0, 4838400, 0, 1693440, 0, 130560, 0, 512, 0, 0
Offset: 1
Peter Luschny, Aug 01 2011
The sequence of polynomials P(n, x) begins:
[0] 1;
[1] 1;
[2] 2;
[3] 6 + x^2;
[4] 24 + 8*x^2;
[5] 120 + 60*x^2 + x^4;
[6] 720 + 480*x^2 + 32*x^4;
[7] 5040 + 4200*x^2 + 546*x^4 + x^6.
-
A193474_polynom := proc(n,x) local k, j;
add(add((-1)^j*2^(-k)*binomial(k,j)*(k-2*j)^n*x^(n-k),j=0..k),k=0..n) end: seq(seq(coeff(A193474_polynom(n,x),x,i),i=0..n),n=0..10);
-
p[n_, x_] := Sum[(-1)^j*2^(-k)*Binomial[k, j]*(k-2*j)^n*x^(n-k), {k, 0, n}, {j, 0, k}]; t[n_, k_] := Coefficient[p[n, x], x, k]; t[0, 0] = 1; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2014 *)
A166553
Triangle read by rows: T(n, k) = [x^k]( (n+2)!*(3*EulerE(n, x+1) - EulerE(n, x))/4 ).
Original entry on oeis.org
1, 3, 3, 0, 24, 12, -30, 0, 180, 60, 0, -720, 0, 1440, 360, 2520, 0, -12600, 0, 12600, 2520, 0, 120960, 0, -201600, 0, 120960, 20160, -771120, 0, 3810240, 0, -3175200, 0, 1270080, 181440, 0, -61689600, 0, 101606400, 0, -50803200, 0, 14515200, 1814400
Offset: 0
Triangle begins as:
1;
3, 3;
0, 24, 12;
-30, 0, 180, 60;
0, -720, 0, 1440, 360;
2520, 0, -12600, 0, 12600, 2520;
0, 120960, 0, -201600, 0, 120960, 20160;
-771120, 0, 3810240, 0, -3175200, 0, 1270080, 181440;
-
m:= 13;
R:=PowerSeriesRing(Integers(), m+1);
EulerE:= func< n | (2^(n+1)/(n+1))*( Evaluate(BernoulliPolynomial(n+1), 1/2) - 2^(n+1)*Evaluate(BernoulliPolynomial(n+1), 1/4) ) >;
f:= func< n,x | (Factorial(n+2)/2)*( 3*x^n - 2*(&+[ Binomial(n,j)*(EulerE(j)/2^j)*(x - 1/2)^(n-j): j in [0..n]]) ) >;
A166553:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
[A166553(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Nov 30 2024
-
(* first program *)
p[t_]= Exp[x*t](3*Exp[t] - 1)/(Exp[t] + 1);
With[{m=12}, Table[(n!*(n+2)!/2)*CoefficientList[SeriesCoefficient[ Series[p[t], {t,0,m+1}], n], x], {n,0,m}]]//Flatten
(* Second program *)
f[n_, x_]:= (n+2)!*(3*EulerE[n, x+1] - EulerE[n, x])/4;
A166553[n_, k_]:= Coefficient[Series[f[n, x], {x,0,n}], x, k];
Table[A166553[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 30 2024 *)
-
def f(n,x): return (factorial(n+2)/2)*( 3*x^n - 2*sum( binomial(n,j)*euler_number(j)*(x-1/2)^(n-j)/2^j for j in range(n+1)) )
def A166553(n,k): return ( f(n,x) ).series(x,n+1).list()[k]
print(flatten([[A166553(n,k) for k in range(n+1)] for n in range(14)])) # G. C. Greubel, Nov 30 2024
A292930
Triangle read by rows: T(n,k) (n>=1, 3<=k<=n+2) is the number of k-sequences of balls colored with at most n colors such that exactly three balls are the same color as some other ball in the sequence.
Original entry on oeis.org
1, 2, 8, 3, 24, 60, 4, 48, 240, 480, 5, 80, 600, 2400, 4200, 6, 120, 1200, 7200, 25200, 40320, 7, 168, 2100, 16800, 88200, 282240, 423360, 8, 224, 3360, 33600, 235200, 1128960, 3386880, 4838400, 9, 288, 5040, 60480, 529200, 3386880, 15240960, 43545600, 59875200, 10, 360, 7200, 100800, 1058400, 8467200, 50803200, 217728000, 598752000, 798336000
Offset: 1
n=1 => AAA -> T(1,3)=1;
n=2 => AAA,BBB -> T(2,3)=2;
AAAB,AABA,ABAA,BAAA,BBBA,BBAB,BABB,ABBB -> T(2,4)=8.
Triangle begins:
1;
2, 8;
3, 24, 60;
4, 48, 240, 480;
5, 80, 600, 2400, 4200;
...
Other sequences in table: T(n,n+2) =
A005990(n+1).
-
T(n, k) = binomial(k,3)*n!/(n+2-k)!;
tabl(nn) = for (n=1, nn, for (k=3, n+2, print1(T(n,k), ", ")); print()); \\ Michel Marcus, Sep 29 2017
Comments