cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 59 results. Next

A163274 a(n) = n^4*(n+1)^2/2.

Original entry on oeis.org

0, 2, 72, 648, 3200, 11250, 31752, 76832, 165888, 328050, 605000, 1054152, 1752192, 2798978, 4321800, 6480000, 9469952, 13530402, 18948168, 26064200, 35280000, 47064402, 61960712, 80594208, 103680000, 132031250, 166567752, 208324872
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Comments

Row sums of triangle A163284.

Crossrefs

Programs

  • Mathematica
    Table[(n^4 (n+1)^2)/2,{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,2,72,648,3200,11250,31752},30] (* Harvey P. Dale, May 07 2012 *)
  • PARI
    a(n)=n^4*(n+1)^2/2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

From R. J. Mathar, Jul 29 2009: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: -2*x*(1 + 29*x + 93*x^2 + 53*x^3 + 4*x^4)/(x-1)^7. (End)
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*Pi^2/3 + Pi^4/45 - 4*zeta(3) - 10.
Sum_{n>=1} (-1)^(n+1)/a(n) = 10 + Pi^2/3 + 7*Pi^4/360 - 16*log(2) - 3*zeta(3). (End)

Extensions

More terms from R. J. Mathar, Jul 29 2009

A163275 a(n) = n^5*(n+1)^2/2.

Original entry on oeis.org

0, 2, 144, 1944, 12800, 56250, 190512, 537824, 1327104, 2952450, 6050000, 11595672, 21026304, 36386714, 60505200, 97200000, 151519232, 230016834, 341067024, 495219800, 705600000, 988352442, 1363135664, 1853666784
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Comments

Row sums of triangle A163285.

Crossrefs

Programs

  • Maple
    A163275 := proc(n) n^5*(n+1)^2/2 ; end proc: seq(A163275(n),n=0..60) ; # R. J. Mathar, Feb 05 2010
  • Mathematica
    Table[(1/2)*n^5*(n + 1)^2, {n,0,50}] (* or *) LinearRecurrence[{8,-28,56, -70,56,-28,8,-1}, {0,2,144,1944,12800,56250,190512,537824}, 50] (* G. C. Greubel, Dec 12 2016 *)
  • PARI
    concat([0], Vec(2*x*(1+64*x+424*x^2+584*x^3+179*x^4+8*x^5)/(x-1)^8 + O(x^50))) \\ G. C. Greubel, Dec 12 2016

Formula

From R. J. Mathar, Feb 05 2010: (Start)
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: 2*x*(1 + 64*x + 424*x^2 + 584*x^3 + 179*x^4 +8*x^5)/(x-1)^8. (End)
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 12 -5*Pi^2/3 - 2*Pi^4/45 + 6*zeta(3) + 2*zeta(5).
Sum_{n>=1} (-1)^(n+1)/a(n) = 20*log(2) + 9*zeta(3)/2 + 15*zeta(5)/8 - 12 - Pi^2/2 - 7*Pi^4/180. (End)

Extensions

Extended by R. J. Mathar, Feb 05 2010

A213819 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = 3*n-4+3*h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

2, 9, 5, 24, 18, 8, 50, 42, 27, 11, 90, 80, 60, 36, 14, 147, 135, 110, 78, 45, 17, 224, 210, 180, 140, 96, 54, 20, 324, 308, 273, 225, 170, 114, 63, 23, 450, 432, 392, 336, 270, 200, 132, 72, 26, 605, 585, 540, 476, 399, 315
Offset: 1

Views

Author

Clark Kimberling, Jul 04 2012

Keywords

Comments

Principal diagonal: A213820.
Antidiagonal sums: A153978.
Row 1, (1,2,3,4,...)**(2,5,8,11,...): A006002.
Row 2, (1,2,3,4,...)**(5,8,11,14,...): is it the sequence A212343?.
Row 3, (1,2,3,4,...)**(8,11,14,17,...): (k^3 + 8*k^2 + 7*k)/2.
For a guide to related arrays, see A212500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
2....9....24....50....90....147
5....18...42....80....135...210
8....27...60....110...180...273
11...36...78....140...225...336
14...45...96....170...270...399
17...54...114...200...315...462
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=n;c[n_]:=3n-1;
    t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
    TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
    Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
    r[n_]:=Table[t[n,k],{k,1,60}] (* A213819 *)
    Table[t[n,n],{n,1,40}] (* A213820 *)
    d/2 (* A002414 *)
    s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
    Table[s[n],{n,1,50}] (* A153978 *)
    s1/2 (* A001296 *)

Formula

T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x(3*n-1 - (3*n-4)*x) and g(x) = (1-x)^4.

A267370 Partial sums of A140091.

Original entry on oeis.org

0, 6, 21, 48, 90, 150, 231, 336, 468, 630, 825, 1056, 1326, 1638, 1995, 2400, 2856, 3366, 3933, 4560, 5250, 6006, 6831, 7728, 8700, 9750, 10881, 12096, 13398, 14790, 16275, 17856, 19536, 21318, 23205, 25200, 27306, 29526, 31863, 34320, 36900, 39606, 42441, 45408, 48510
Offset: 0

Views

Author

Bruno Berselli, Jan 13 2016

Keywords

Comments

After 0, this sequence is the third column of the array in A185874.
Sequence is related to A051744 by A051744(n) = n*a(n)/3 - Sum_{i=0..n-1} a(i) for n>0.

Examples

			The sequence is also provided by the row sums of the following triangle (see the fourth formula above):
.  0;
.  1,  5;
.  4,  7, 10;
.  9, 11, 13, 15;
. 16, 17, 18, 19, 20;
. 25, 25, 25, 25, 25, 25;
. 36, 35, 34, 33, 32, 31, 30;
. 49, 47, 45, 43, 41, 39, 37, 35;
. 64, 61, 58, 55, 52, 49, 46, 43, 40;
. 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc.
First column is A000290.
Second column is A027690.
Third column is included in A189834.
Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc.
Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532.
		

Crossrefs

Cf. similar sequences of the type n*(n+1)*(n+k)/2: A002411 (k=0), A006002 (k=1), A027480 (k=2), A077414 (k=3, with offset 1), A212343 (k=4, without the initial 0), this sequence (k=5).

Programs

  • Magma
    [n*(n+1)*(n+5)/2: n in [0..50]];
  • Mathematica
    Table[n (n + 1) (n + 5)/2, {n, 0, 50}]
    LinearRecurrence[{4,-6,4,-1},{0,6,21,48},50] (* Harvey P. Dale, Jul 18 2019 *)
  • PARI
    vector(50, n, n--; n*(n+1)*(n+5)/2)
    
  • Sage
    [n*(n+1)*(n+5)/2 for n in (0..50)]
    

Formula

O.g.f.: 3*x*(2 - x)/(1 - x)^4.
E.g.f.: x*(12 + 9*x + x^2)*exp(x)/2.
a(n) = n*(n + 1)*(n + 5)/2.
a(n) = Sum_{i=0..n} n*(n - i) + 5*i, that is: a(n) = A002411(n) + A028895(n). More generally, Sum_{i=0..n} n*(n - i) + k*i = n*(n + 1)*(n + k)/2.
a(n) = 3*A005581(n+1).
a(n+1) - 3*a(n) + 3*a(n-1) = 3*A105163(n) for n>0.
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=1} 1/a(n) = 163/600.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 253/600. (End)

A317303 Numbers k such that both Dyck paths of the symmetric representation of sigma(k) have a central peak.

Original entry on oeis.org

2, 7, 8, 9, 16, 17, 18, 19, 20, 29, 30, 31, 32, 33, 34, 35, 46, 47, 48, 49, 50, 51, 52, 53, 54, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 154, 155, 156, 157, 158, 159, 160
Offset: 1

Views

Author

Omar E. Pol, Aug 27 2018

Keywords

Comments

Also triangle read by rows which gives the odd-indexed rows of triangle A014132.
There are no triangular number (A000217) in this sequence.
For more information about the symmetric representation of sigma see A237593 and its related sequences.
Equivalently, numbers k with the property that both Dyck paths of the symmetric representation of sigma(k) have an odd number of peaks. - Omar E. Pol, Sep 13 2018

Examples

			Written as an irregular triangle in which the row lengths are the odd numbers, the sequence begins:
    2;
    7,   8,   9;
   16,  17,  18,  19,  20;
   29,  30,  31,  32,  33,  34,  35;
   46,  47,  48,  49,  50,  51,  52,  53,  54;
   67,  68,  69,  70,  71,  72,  73,  74,  75,  76,  77;
   92,  93,  94,  95,  96,  97,  98,  99, 100, 101, 102, 103, 104;
  121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135;
...
Illustration of initial terms:
-----------------------------------------------------------
   k   sigma(k)   Diagram of the symmetry of sigma
-----------------------------------------------------------
                    _         _ _ _             _ _ _ _ _
                  _| |       | | | |           | | | | | |
   2      3      |_ _|       | | | |           | | | | | |
                             | | | |           | | | | | |
                            _|_| | |           | | | | | |
                          _|  _ _|_|           | | | | | |
                  _ _ _ _|  _| |               | | | | | |
   7      8      |_ _ _ _| |_ _|               | | | | | |
   8     15      |_ _ _ _ _|              _ _ _| | | | | |
   9     13      |_ _ _ _ _|             |  _ _ _|_| | | |
                                        _| |    _ _ _|_| |
                                      _|  _|   |  _ _ _ _|
                                  _ _|  _|  _ _| |
                                 |  _ _|  _|    _|
                                 | |     |     |
                  _ _ _ _ _ _ _ _| |  _ _|  _ _|
  16     31      |_ _ _ _ _ _ _ _ _| |  _ _|
  17     18      |_ _ _ _ _ _ _ _ _| | |
  18     39      |_ _ _ _ _ _ _ _ _ _| |
  19     20      |_ _ _ _ _ _ _ _ _ _| |
  20     42      |_ _ _ _ _ _ _ _ _ _ _|
.
For the first nine terms of the sequence we can see in the above diagram that both Dyck path (the smallest and the largest) of the symmetric representation of sigma(k) have a central peak.
Compare with A317304.
		

Crossrefs

Column 1 gives A130883, n >= 1.
Column 2 gives A033816, n >= 1.
Row sums give the odd-indexed terms of A006002.
Right border gives the positive terms of A014107, also the odd-indexed terms of A000096.
The union of A000217, A317304 and this sequence gives A001477.
Some other sequences related to the central peak or the central valley of the symmetric representation of sigma are A000217, A000384, A007606, A007607, A014105, A014132, A162917, A161983, A317304. See also A317306.

A330298 a(n) is the number of subsets of {1..n} that contain exactly 1 odd and 2 even numbers.

Original entry on oeis.org

0, 0, 0, 0, 2, 3, 9, 12, 24, 30, 50, 60, 90, 105, 147, 168, 224, 252, 324, 360, 450, 495, 605, 660, 792, 858, 1014, 1092, 1274, 1365, 1575, 1680, 1920, 2040, 2312, 2448, 2754, 2907, 3249, 3420, 3800, 3990, 4410, 4620, 5082, 5313, 5819, 6072, 6624, 6900, 7500, 7800, 8450, 8775, 9477
Offset: 0

Views

Author

Enrique Navarrete, Feb 29 2020

Keywords

Comments

The general formula for the number of subsets of {1..n} that contain exactly k odd and j even numbers is binomial(ceiling(n/2), k) * binomial(floor(n/2), j).

Examples

			For n=6, a(6) = 9 and the 9 subsets are: {1,2,4}, {1,2,6}, {1,4,6}, {2,3,4}, {2,3,6}, {2,4,5}, {2,5,6}, {3,4,6}, {4,5,6}.
		

Crossrefs

Interleaves the positive integers of A006002 and A027480.

Programs

  • Mathematica
    a[n_] := Ceiling[n/2] * Binomial[Floor[n/2], 2]; Array[a, 55, 0] (* Amiram Eldar, Mar 01 2020 *)
    Table[Length[Select[Subsets[Range[n],{3}],Total[Boole[OddQ[#]]]==1&]],{n,0,60}] (* Harvey P. Dale, Jul 26 2020 *)
  • PARI
    a(n) = ceil(n/2) * binomial(floor(n/2), 2) \\ Andrew Howroyd, Mar 01 2020
    
  • PARI
    concat([0,0,0,0], Vec(x^4*(2 + x) / ((1 - x)^4*(1 + x)^3) + O(x^40))) \\ Colin Barker, Mar 02 2020

Formula

a(n) = ceiling(n/2) * binomial(floor(n/2), 2).
From Colin Barker, Mar 01 2020: (Start)
G.f.: x^4*(2 + x) / ((1 - x)^4*(1 + x)^3).
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>6. (End)
E.g.f.: (x*(-3 + x + x^2)*cosh(x) + (3 - x + x^3)*sinh(x))/16. - Stefano Spezia, Mar 02 2020
a(n) = 3/32-5*n^2/32-n/32+n^3/16+(-)^n*(n-3+n^2)/32. - R. J. Mathar, Mar 31 2025

A082146 Expansion of g.f.: (1+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 3, 6, 6, 8, 9, 13, 12, 17, 18, 22, 24, 30, 30, 38, 40, 46, 50, 59, 60, 71, 75, 84, 90, 102, 105, 120, 126, 138, 147, 163, 168, 187, 196, 212, 224, 244, 252, 276, 288, 308, 324, 349, 360, 389, 405, 430, 450, 480, 495, 530, 550, 580, 605, 641, 660, 701, 726
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2003

Keywords

Comments

Poincaré series [or Poincare series] (or Molien series) for (P[x_0,x_1] ⊗ P[x_0,x_1])^(S_2).

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 199.

Crossrefs

Cf. A010875 (n mod 6). Contains A006002 and A212683. - Luce ETIENNE, Aug 14 2018

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70);
    Coefficients(R!( (1-x^10)/(&*[1-x^j: j in [2..6]]) )); // G. C. Greubel, Apr 02 2023
    
  • Maple
    seq(coeff(series((1+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)), x,n+1),x,n),n=0..70); # Muniru A Asiru, Aug 15 2018
  • Mathematica
    CoefficientList[Series[(1-x^10)/Product[1-x^(j+1), {j,5}], {x,0,70}], x] (* G. C. Greubel, Apr 02 2023 *)
  • PARI
    Vec((1+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)) + O(x^100)) \\ Michel Marcus, Mar 19 2014
    
  • SageMath
    def A082146_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x^10)/prod(1-x^j for j in range(2,7)) ).list()
    A082146_list(70) # G. C. Greubel, Apr 02 2023

Formula

a(n) = a(n-1) + a(n-3) - a(n-5) + a(n-6) - 2*a(n-7) + a(n-8) - a(n-9) + a(n-11) + a(n-13) - a(n-14).
G.f.: ( 1+x^2+x^4-x-x^3 ) / ( (1+x^2)*(1-x+x^2)*(1+x)^2*(1+x+x^2)^2*(1-x)^4 ). - R. J. Mathar, Oct 11 2011
a(n) = (120*floor(n/6)^3 + 60*(m+5)*floor(n/6)^2 - 20*(m^5-13*m^4 +60*m^3-116*m^2+74*m-18)*floor(n/6) - (19*m^5-245*m^4+1125*m^3-2185*m^2+1496*m-210) + (m^5-15*m^4+75*m^3-135*m^2+44*m+30)*(-1)^floor(n/6))/240 where m = (n mod 6). - Luce ETIENNE, Aug 14 2018

A163276 a(n) = n^6*(n+1)^2/2.

Original entry on oeis.org

0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832, 26572050, 60500000, 127552392, 252315648, 473027282, 847072800, 1458000000, 2424307712, 3910286178, 6139206432, 9409176200, 14112000000, 20755401282, 29988984608
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Crossrefs

Programs

  • Magma
    [n^6*(n+1)^2/2: n in [0..30]]; // Vincenzo Librandi, Dec 13 2016
  • Maple
    seq((1/2)*n^6*(n+1)^2, n = 0 .. 25); # Emeric Deutsch, Aug 01 2009
  • Mathematica
    Table[(1/2)*n^6*(n + 1)^2, {n,0,50}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1}, {0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832}, 50] (* G. C. Greubel, Dec 12 2016 *)
  • PARI
    concat([0], Vec(2*x*(1 + 135*x +1656*x^2 +4456*x^3 +3231*x^4 +585*x^5 +16*x^6)/(1-x)^9 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
    

Formula

G.f.: 2*x*(1+135*x+1656*x^2+4456*x^3+3231*x^4+585*x^5+16*x^6)/(1-x)^9. - Colin Barker, May 05 2012
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi^2 + Pi^4/15 + 2*Pi^6/945 - 14 - 8*zeta(3) - 4*zeta(5).
Sum_{n>=1} (-1)^(n+1)/a(n) = 14 + 2*Pi^2/3 + 7*Pi^4/120 + 31*Pi^6/15120 - 24*log(2) - 6*zeta(3) - 15*zeta(5)/4. (End)

Extensions

Extended by Emeric Deutsch, Aug 01 2009

A163277 a(n) = n^7*(n+1)^2/2.

Original entry on oeis.org

0, 2, 576, 17496, 204800, 1406250, 6858432, 26353376, 84934656, 239148450, 605000000, 1403076312, 3027787776, 6149354666, 11859019200, 21870000000, 38788923392, 66474865026, 110505715776, 178774347800, 282240000000
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Crossrefs

Programs

  • Magma
    [n^7*(n+1)^2/2: n in [0..30]]; // Vincenzo Librandi, Dec 13 2016
  • Maple
    A163277 := proc(n) n^7*(n+1)^2/2 ; end proc: seq(A163277(n),n=0..60) ; \\ R. J. Mathar, Feb 05 2010
  • Mathematica
    Table[(1/2)*n^7*(n + 1)^2, {n,0,50}] (* G. C. Greubel, Dec 12 2016 *)
  • PARI
    concat([0], Vec(2*x*(1 +278*x +5913*x^2 +27760*x^3 +38435*x^4 +16434*x^5 +1867*x^6 +32*x^7)/(x-1)^10 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
    

Formula

From R. J. Mathar, Feb 05 2010: (Start)
a(n) = n^2*A163275(n).
G.f.: 2*x*(1 +278*x +5913*x^2 +27760*x^3 +38435*x^4 +16434*x^5 +1867*x^6 +32*x^7)/(x-1)^10. (End)
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 16 - 7*Pi^2/3 - 4*Pi^4/45 - 4*Pi^6/945 + 10*zeta(3) + 6*zeta(5) + 2*zeta(7).
Sum_{n>=1} (-1)^(n+1)/a(n) = 28*log(2) + 15*zeta(3)/2 + 45*zeta(5)/8 + 63*zeta(7)/32 - 16 - 5*Pi^2/6 - 7*Pi^4/90 - 31*Pi^6/7560. (End)

Extensions

Extended by R. J. Mathar, Feb 05 2010

A082289 Expansion of x^4*(2+x)/((1+x)*(1-x)^5).

Original entry on oeis.org

2, 9, 26, 59, 116, 206, 340, 530, 790, 1135, 1582, 2149, 2856, 3724, 4776, 6036, 7530, 9285, 11330, 13695, 16412, 19514, 23036, 27014, 31486, 36491, 42070, 48265, 55120, 62680, 70992, 80104, 90066, 100929, 112746, 125571, 139460, 154470
Offset: 4

Views

Author

Michael Somos, Apr 07 2003

Keywords

Crossrefs

Cf. A045947 (which contains the first differences). - Bruno Berselli, Aug 26 2011

Programs

  • Magma
    [(1/96)*(2*(n-2)*n*(3*n^2-10*n+4)+3*(-1)^n-3): n in [4..50]]; // Vincenzo Librandi, Aug 29 2011
  • Mathematica
    Drop[CoefficientList[Series[x^4(2+x)/((1+x)(1-x)^5),{x,0,50}],x],4] (* or *) LinearRecurrence[{4,-5,0,5,-4,1},{2,9,26,59,116,206},50] (* Harvey P. Dale, Aug 26 2013 *)
  • PARI
    a(n)=polcoeff(if(n>0,x^4*(2+x)/((1+x)*(1-x)^5),x*(1+2*x)/((1+x)*(1-x)^5))+x*O(x^abs(n)),abs(n))
    

Formula

G.f.: x^4*(2+x)/((1+x)*(1-x)^5).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) + 3. If sequence is also defined for n <= 3 by this equation, then a(n)=0 for 0 <= n <= 3 and a(n) = A070893(-n) for n < 0.
a(n) = A082290(2*n-7).
a(n) = (1/96)*(2*(n-2)*n*(3*n^2 - 10*n + 4) + 3*(-1)^n - 3). a(n) - a(n-2) = A006002(n-3) for n > 5. - Bruno Berselli, Aug 26 2011
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6); a(4)=2, a(5)=9, a(6)=26, a(7)=59, a(8)=116, a(9)=206. - Harvey P. Dale, Aug 26 2013
Previous Showing 21-30 of 59 results. Next