A163274
a(n) = n^4*(n+1)^2/2.
Original entry on oeis.org
0, 2, 72, 648, 3200, 11250, 31752, 76832, 165888, 328050, 605000, 1054152, 1752192, 2798978, 4321800, 6480000, 9469952, 13530402, 18948168, 26064200, 35280000, 47064402, 61960712, 80594208, 103680000, 132031250, 166567752, 208324872
Offset: 0
-
Table[(n^4 (n+1)^2)/2,{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,2,72,648,3200,11250,31752},30] (* Harvey P. Dale, May 07 2012 *)
-
a(n)=n^4*(n+1)^2/2 \\ Charles R Greathouse IV, Oct 07 2015
A163275
a(n) = n^5*(n+1)^2/2.
Original entry on oeis.org
0, 2, 144, 1944, 12800, 56250, 190512, 537824, 1327104, 2952450, 6050000, 11595672, 21026304, 36386714, 60505200, 97200000, 151519232, 230016834, 341067024, 495219800, 705600000, 988352442, 1363135664, 1853666784
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
A163275 := proc(n) n^5*(n+1)^2/2 ; end proc: seq(A163275(n),n=0..60) ; # R. J. Mathar, Feb 05 2010
-
Table[(1/2)*n^5*(n + 1)^2, {n,0,50}] (* or *) LinearRecurrence[{8,-28,56, -70,56,-28,8,-1}, {0,2,144,1944,12800,56250,190512,537824}, 50] (* G. C. Greubel, Dec 12 2016 *)
-
concat([0], Vec(2*x*(1+64*x+424*x^2+584*x^3+179*x^4+8*x^5)/(x-1)^8 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
A213819
Rectangular array: (row n) = b**c, where b(h) = h, c(h) = 3*n-4+3*h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
2, 9, 5, 24, 18, 8, 50, 42, 27, 11, 90, 80, 60, 36, 14, 147, 135, 110, 78, 45, 17, 224, 210, 180, 140, 96, 54, 20, 324, 308, 273, 225, 170, 114, 63, 23, 450, 432, 392, 336, 270, 200, 132, 72, 26, 605, 585, 540, 476, 399, 315
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
2....9....24....50....90....147
5....18...42....80....135...210
8....27...60....110...180...273
11...36...78....140...225...336
14...45...96....170...270...399
17...54...114...200...315...462
-
b[n_]:=n;c[n_]:=3n-1;
t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}]
TableForm[Table[t[n,k],{n,1,10},{k,1,10}]]
Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]]
r[n_]:=Table[t[n,k],{k,1,60}] (* A213819 *)
Table[t[n,n],{n,1,40}] (* A213820 *)
d/2 (* A002414 *)
s[n_]:=Sum[t[i,n+1-i],{i,1,n}]
Table[s[n],{n,1,50}] (* A153978 *)
s1/2 (* A001296 *)
Original entry on oeis.org
0, 6, 21, 48, 90, 150, 231, 336, 468, 630, 825, 1056, 1326, 1638, 1995, 2400, 2856, 3366, 3933, 4560, 5250, 6006, 6831, 7728, 8700, 9750, 10881, 12096, 13398, 14790, 16275, 17856, 19536, 21318, 23205, 25200, 27306, 29526, 31863, 34320, 36900, 39606, 42441, 45408, 48510
Offset: 0
The sequence is also provided by the row sums of the following triangle (see the fourth formula above):
. 0;
. 1, 5;
. 4, 7, 10;
. 9, 11, 13, 15;
. 16, 17, 18, 19, 20;
. 25, 25, 25, 25, 25, 25;
. 36, 35, 34, 33, 32, 31, 30;
. 49, 47, 45, 43, 41, 39, 37, 35;
. 64, 61, 58, 55, 52, 49, 46, 43, 40;
. 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc.
First column is A000290.
Second column is A027690.
Third column is included in A189834.
Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc.
Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532.
Cf. similar sequences of the type n*(n+1)*(n+k)/2:
A002411 (k=0),
A006002 (k=1),
A027480 (k=2),
A077414 (k=3, with offset 1),
A212343 (k=4, without the initial 0), this sequence (k=5).
-
[n*(n+1)*(n+5)/2: n in [0..50]];
-
Table[n (n + 1) (n + 5)/2, {n, 0, 50}]
LinearRecurrence[{4,-6,4,-1},{0,6,21,48},50] (* Harvey P. Dale, Jul 18 2019 *)
-
vector(50, n, n--; n*(n+1)*(n+5)/2)
-
[n*(n+1)*(n+5)/2 for n in (0..50)]
A317303
Numbers k such that both Dyck paths of the symmetric representation of sigma(k) have a central peak.
Original entry on oeis.org
2, 7, 8, 9, 16, 17, 18, 19, 20, 29, 30, 31, 32, 33, 34, 35, 46, 47, 48, 49, 50, 51, 52, 53, 54, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 154, 155, 156, 157, 158, 159, 160
Offset: 1
Written as an irregular triangle in which the row lengths are the odd numbers, the sequence begins:
2;
7, 8, 9;
16, 17, 18, 19, 20;
29, 30, 31, 32, 33, 34, 35;
46, 47, 48, 49, 50, 51, 52, 53, 54;
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77;
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104;
121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135;
...
Illustration of initial terms:
-----------------------------------------------------------
k sigma(k) Diagram of the symmetry of sigma
-----------------------------------------------------------
_ _ _ _ _ _ _ _ _
_| | | | | | | | | | | |
2 3 |_ _| | | | | | | | | | |
| | | | | | | | | |
_|_| | | | | | | | |
_| _ _|_| | | | | | |
_ _ _ _| _| | | | | | | |
7 8 |_ _ _ _| |_ _| | | | | | |
8 15 |_ _ _ _ _| _ _ _| | | | | |
9 13 |_ _ _ _ _| | _ _ _|_| | | |
_| | _ _ _|_| |
_| _| | _ _ _ _|
_ _| _| _ _| |
| _ _| _| _|
| | | |
_ _ _ _ _ _ _ _| | _ _| _ _|
16 31 |_ _ _ _ _ _ _ _ _| | _ _|
17 18 |_ _ _ _ _ _ _ _ _| | |
18 39 |_ _ _ _ _ _ _ _ _ _| |
19 20 |_ _ _ _ _ _ _ _ _ _| |
20 42 |_ _ _ _ _ _ _ _ _ _ _|
.
For the first nine terms of the sequence we can see in the above diagram that both Dyck path (the smallest and the largest) of the symmetric representation of sigma(k) have a central peak.
Compare with A317304.
Row sums give the odd-indexed terms of
A006002.
Right border gives the positive terms of
A014107, also the odd-indexed terms of
A000096.
Cf.
A000203,
A005408,
A196020,
A236104,
A235791,
A237048,
A237591,
A237593,
A237270,
A237271,
A239660,
A239931,
A239932,
A239933,
A239934,
A244050,
A245092,
A249351,
A262626.
A330298
a(n) is the number of subsets of {1..n} that contain exactly 1 odd and 2 even numbers.
Original entry on oeis.org
0, 0, 0, 0, 2, 3, 9, 12, 24, 30, 50, 60, 90, 105, 147, 168, 224, 252, 324, 360, 450, 495, 605, 660, 792, 858, 1014, 1092, 1274, 1365, 1575, 1680, 1920, 2040, 2312, 2448, 2754, 2907, 3249, 3420, 3800, 3990, 4410, 4620, 5082, 5313, 5819, 6072, 6624, 6900, 7500, 7800, 8450, 8775, 9477
Offset: 0
For n=6, a(6) = 9 and the 9 subsets are: {1,2,4}, {1,2,6}, {1,4,6}, {2,3,4}, {2,3,6}, {2,4,5}, {2,5,6}, {3,4,6}, {4,5,6}.
- Colin Barker, Table of n, a(n) for n = 0..1000
- J.S. Seneschal, Oblong Prism Illustration
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
-
a[n_] := Ceiling[n/2] * Binomial[Floor[n/2], 2]; Array[a, 55, 0] (* Amiram Eldar, Mar 01 2020 *)
Table[Length[Select[Subsets[Range[n],{3}],Total[Boole[OddQ[#]]]==1&]],{n,0,60}] (* Harvey P. Dale, Jul 26 2020 *)
-
a(n) = ceil(n/2) * binomial(floor(n/2), 2) \\ Andrew Howroyd, Mar 01 2020
-
concat([0,0,0,0], Vec(x^4*(2 + x) / ((1 - x)^4*(1 + x)^3) + O(x^40))) \\ Colin Barker, Mar 02 2020
A082146
Expansion of g.f.: (1+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)).
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 3, 6, 6, 8, 9, 13, 12, 17, 18, 22, 24, 30, 30, 38, 40, 46, 50, 59, 60, 71, 75, 84, 90, 102, 105, 120, 126, 138, 147, 163, 168, 187, 196, 212, 224, 244, 252, 276, 288, 308, 324, 349, 360, 389, 405, 430, 450, 480, 495, 530, 550, 580, 605, 641, 660, 701, 726
Offset: 0
- A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 199.
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,0,-1,1,-2,1,-1,0,1,0,1,-1).
-
R:=PowerSeriesRing(Integers(), 70);
Coefficients(R!( (1-x^10)/(&*[1-x^j: j in [2..6]]) )); // G. C. Greubel, Apr 02 2023
-
seq(coeff(series((1+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)), x,n+1),x,n),n=0..70); # Muniru A Asiru, Aug 15 2018
-
CoefficientList[Series[(1-x^10)/Product[1-x^(j+1), {j,5}], {x,0,70}], x] (* G. C. Greubel, Apr 02 2023 *)
-
Vec((1+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)) + O(x^100)) \\ Michel Marcus, Mar 19 2014
-
def A082146_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x^10)/prod(1-x^j for j in range(2,7)) ).list()
A082146_list(70) # G. C. Greubel, Apr 02 2023
A163276
a(n) = n^6*(n+1)^2/2.
Original entry on oeis.org
0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832, 26572050, 60500000, 127552392, 252315648, 473027282, 847072800, 1458000000, 2424307712, 3910286178, 6139206432, 9409176200, 14112000000, 20755401282, 29988984608
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
[n^6*(n+1)^2/2: n in [0..30]]; // Vincenzo Librandi, Dec 13 2016
-
seq((1/2)*n^6*(n+1)^2, n = 0 .. 25); # Emeric Deutsch, Aug 01 2009
-
Table[(1/2)*n^6*(n + 1)^2, {n,0,50}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1}, {0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832}, 50] (* G. C. Greubel, Dec 12 2016 *)
-
concat([0], Vec(2*x*(1 + 135*x +1656*x^2 +4456*x^3 +3231*x^4 +585*x^5 +16*x^6)/(1-x)^9 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
A163277
a(n) = n^7*(n+1)^2/2.
Original entry on oeis.org
0, 2, 576, 17496, 204800, 1406250, 6858432, 26353376, 84934656, 239148450, 605000000, 1403076312, 3027787776, 6149354666, 11859019200, 21870000000, 38788923392, 66474865026, 110505715776, 178774347800, 282240000000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
[n^7*(n+1)^2/2: n in [0..30]]; // Vincenzo Librandi, Dec 13 2016
-
A163277 := proc(n) n^7*(n+1)^2/2 ; end proc: seq(A163277(n),n=0..60) ; \\ R. J. Mathar, Feb 05 2010
-
Table[(1/2)*n^7*(n + 1)^2, {n,0,50}] (* G. C. Greubel, Dec 12 2016 *)
-
concat([0], Vec(2*x*(1 +278*x +5913*x^2 +27760*x^3 +38435*x^4 +16434*x^5 +1867*x^6 +32*x^7)/(x-1)^10 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
A082289
Expansion of x^4*(2+x)/((1+x)*(1-x)^5).
Original entry on oeis.org
2, 9, 26, 59, 116, 206, 340, 530, 790, 1135, 1582, 2149, 2856, 3724, 4776, 6036, 7530, 9285, 11330, 13695, 16412, 19514, 23036, 27014, 31486, 36491, 42070, 48265, 55120, 62680, 70992, 80104, 90066, 100929, 112746, 125571, 139460, 154470
Offset: 4
-
[(1/96)*(2*(n-2)*n*(3*n^2-10*n+4)+3*(-1)^n-3): n in [4..50]]; // Vincenzo Librandi, Aug 29 2011
-
Drop[CoefficientList[Series[x^4(2+x)/((1+x)(1-x)^5),{x,0,50}],x],4] (* or *) LinearRecurrence[{4,-5,0,5,-4,1},{2,9,26,59,116,206},50] (* Harvey P. Dale, Aug 26 2013 *)
-
a(n)=polcoeff(if(n>0,x^4*(2+x)/((1+x)*(1-x)^5),x*(1+2*x)/((1+x)*(1-x)^5))+x*O(x^abs(n)),abs(n))
Comments