cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 155 results. Next

A000069 Odious numbers: numbers with an odd number of 1's in their binary expansion.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 128
Offset: 1

Views

Author

Keywords

Comments

This sequence and A001969 give the unique solution to the problem of splitting the nonnegative integers into two classes in such a way that sums of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000028, A000379.
In French: les nombres impies.
Has asymptotic density 1/2, since exactly 2 of the 4 numbers 4k, 4k+1, 4k+2, 4k+3 have an even sum of bits, while the other 2 have an odd sum. - Jeffrey Shallit, Jun 04 2002
Nim-values for game of mock turtles played with n coins.
A115384(n) = number of odious numbers <= n; A000120(a(n)) = A132680(n). - Reinhard Zumkeller, Aug 26 2007
Indices of 1's in the Thue-Morse sequence A010060. - Tanya Khovanova, Dec 29 2008
For any positive integer m, the partition of the set of the first 2^m positive integers into evil ones E and odious ones O is a fair division for any polynomial sequence p(k) of degree less than m, that is, Sum_{k in E} p(k) = Sum_{k in O} p(k) holds for any polynomial p with deg(p) < m. - Pietro Majer, Mar 15 2009
For n>1 let b(n) = a(n-1). Then b(b(n)) = 2b(n). - Benoit Cloitre, Oct 07 2010
Lexicographically earliest sequence of distinct nonnegative integers with no term being the binary exclusive OR of any terms. The equivalent sequence for addition or for subtraction is A005408 (the odd numbers) and for multiplication is A026424. - Peter Munn, Jan 14 2018
Numbers of the form m XOR (2*m+1) for some m >= 0. - Rémy Sigrist, Apr 14 2022

Examples

			For k=2, x=0 and x=0.2 we respectively have 1^2 + 2^2 + 4^2 + 7^2 = 0^2 + 3^2 + 5^2 + 6^2 = 70;
(1.2)^2 + (2.2)^2 + (4.2)^2 + (7.2)^2 = (0.2)^2 + (3.2)^2 + (5.2)^2 + (6.2)^2 = 75.76;
for k=3, x=1.8, we have (2.8)^3 + (3.8)^3 + (5.8)^3 + (8.8)^3 + (9.8)^3 + (12.8)^3 + (14.8)^3 + (15.8)^3 = (1.8)^3 + (4.8)^3 + (6.8)^3 + (7.8)^3 + (10.8)^3 + (11.8)^3 + (13.8)^3 + (16.8)^3 = 11177.856. - _Vladimir Shevelev_, Jan 16 2012
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 433.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • Vladimir S. Shevelev, On some identities connected with the partition of the positive integers with respect to the Morse sequence, Izv. Vuzov of the North-Caucasus region, Nature sciences 4 (1997), 21-23 (in Russian).
  • N. J. A. Sloane, A handbook of Integer Sequences, Academic Press, 1973 (including this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015.
Complement of A001969 (the evil numbers). Cf. A133009.
a(n) = 2*n + 1 - A010060(n) = A001969(n) + (-1)^A010060(n).
First differences give A007413.
Note that A000079, A083420, A002042, A002089, A132679 are subsequences.
See A027697 for primes, also A230095.
Cf. A005408 (odd numbers), A006068, A026424.

Programs

  • Haskell
    a000069 n = a000069_list !! (n-1)
    a000069_list = [x | x <- [0..], odd $ a000120 x]
    -- Reinhard Zumkeller, Feb 01 2012
    
  • Magma
    [ n: n in [1..130] | IsOdd(&+Intseq(n, 2)) ]; // Klaus Brockhaus, Oct 07 2010
    
  • Maple
    s := proc(n) local i,j,k,b,sum,ans; ans := [ ]; j := 0; for i while jA000069 := n->t1[n]; # s(k) gives first k terms.
    is_A000069 := n -> type(add(i,i=convert(n,base,2)),odd):
    seq(`if`(is_A000069(i),i,NULL),i=0..40); # Peter Luschny, Feb 03 2011
  • Mathematica
    Select[Range[300], OddQ[DigitCount[ #, 2][[1]]] &] (* Stefan Steinerberger, Mar 31 2006 *)
    a[ n_] := If[ n < 1, 0, 2 n - 1 - Mod[ Total @ IntegerDigits[ n - 1, 2], 2]]; (* Michael Somos, Jun 01 2013 *)
  • PARI
    {a(n) = if( n<1, 0, 2*n - 1 - subst( Pol(binary( n-1)), x, 1) % 2)}; /* Michael Somos, Jun 01 2013 */
    
  • PARI
    {a(n) = if( n<2, n==1, if( n%2, a((n+1)/2) + n-1, -a(n/2) + 3*(n-1)))}; /* Michael Somos, Jun 01 2013 */
    
  • PARI
    a(n)=2*n-1-hammingweight(n-1)%2 \\ Charles R Greathouse IV, Mar 22 2013
    
  • Python
    [n for n in range(1, 201) if bin(n)[2:].count("1") % 2] # Indranil Ghosh, May 03 2017
    
  • Python
    def A000069(n): return ((m:=n-1)<<1)+(m.bit_count()&1^1) # Chai Wah Wu, Mar 03 2023

Formula

G.f.: 1 + Sum_{k>=0} (t*(2+2t+5t^2-t^4)/(1-t^2)^2) * Product_{j=0..k-1} (1-x^(2^j)), t=x^2^k. - Ralf Stephan, Mar 25 2004
a(n+1) = (1/2) * (4*n + 1 + (-1)^A000120(n)). - Ralf Stephan, Sep 14 2003
Numbers n such that A010060(n) = 1. - Benoit Cloitre, Nov 15 2003
a(2*n+1) + a(2*n) = A017101(n) = 8*n+3. a(2*n+1) - a(2*n) gives the Thue-Morse sequence (1, 3 version): 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, ... A001969(n) + A000069(n) = A016813(n) = 4*n+1. - Philippe Deléham, Feb 04 2004
(-1)^a(n) = 2*A010060(n)-1. - Benoit Cloitre, Mar 08 2004
a(1) = 1; for n > 1: a(2*n) = 6*n-3 -a(n), a(2*n+1) = a(n+1) + 2*n. - Corrected by Vladimir Shevelev, Sep 25 2011
For k >= 1 and for every real (or complex) x, we have Sum_{i=1..2^k} (a(i)+x)^s = Sum_{i=1..2^k} (A001969(i)+x)^s, s=0..k.
For x=0, s <= k-1, this is known as Prouhet theorem (see J.-P. Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence). - Vladimir Shevelev, Jan 16 2012
a(n+1) mod 2 = 1 - A010060(n) = A010059(n). - Robert G. Wilson v, Jan 18 2012
A005590(a(n)) > 0. - Reinhard Zumkeller, Apr 11 2012
A106400(a(n)) = -1. - Reinhard Zumkeller, Apr 29 2012
a(n+1) = A006068(n) XOR (2*A006068(n) + 1). - Rémy Sigrist, Apr 14 2022

A001969 Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.

Original entry on oeis.org

0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30, 33, 34, 36, 39, 40, 43, 45, 46, 48, 51, 53, 54, 57, 58, 60, 63, 65, 66, 68, 71, 72, 75, 77, 78, 80, 83, 85, 86, 89, 90, 92, 95, 96, 99, 101, 102, 105, 106, 108, 111, 113, 114, 116, 119, 120, 123, 125, 126, 129
Offset: 1

Views

Author

Keywords

Comments

This sequence and A000069 give the unique solution to the problem of splitting the nonnegative integers into two classes in such a way that sums of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000028, A000379.
In French: les nombres païens.
Theorem: First differences give A036585. (Observed by Franklin T. Adams-Watters.)
Proof from Max Alekseyev, Aug 30 2006 (edited by N. J. A. Sloane, Jan 05 2021): (Start)
Observe that if the last bit of a(n) is deleted, we get the nonnegative numbers 0, 1, 2, 3, ... in order.
The last bit in a(n+1) is 1 iff the number of bits in n is odd, that is, iff A010060(n+1) is 1.
So, taking into account the different offsets here and in A010060, we have a(n) = 2*(n-1) + A010060(n-1).
Therefore the first differences of the present sequence equal 2 + first differences of A010060, which equals A036585. QED (End)
Integers k such that A010060(k-1)=0. - Benoit Cloitre, Nov 15 2003
Indices of zeros in the Thue-Morse sequence A010060 shifted by 1. - Tanya Khovanova, Feb 13 2009
Conjecture, checked up to 10^6: a(n) is also the sequence of numbers k representable as k = ror(x) XOR rol(x) (for some integer x) where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left, and XOR is the binary exclusive-or operator. - Alex Ratushnyak, May 14 2016
From Charlie Neder, Oct 07 2018: (Start)
Conjecture is true: ror(x) and rol(x) have an even number of 1 bits in total (= 2 * A000120(x)), and XOR preserves the parity of this total, so the resulting number must have an even number of 1 bits. An x can be constructed corresponding to a(n) like so:
If the number of bits in a(n) is even, add a leading 0 so a(n) is 2k+1 bits long.
Do an inverse shuffle on a(n), then "divide" by 11, rotate the result k bits to the right, and shuffle to get x. (End)
Numbers of the form m XOR (2*m) for some m >= 0. - Rémy Sigrist, Feb 07 2021
The terms "evil numbers" and "odious numbers" were coined by Richard K. Guy, c. 1976 (Haque and Shallit, 2016) and appeared in the book by Berlekamp et al. (Vol. 1, 1st ed., 1982). - Amiram Eldar, Jun 08 2021

References

  • Elwyn R. Berlekamp, John H. Conway, Richard K. Guy, Winning Ways for Your Mathematical Plays, Volume 1, 2nd ed., A K Peters, 2001, chapter 14, p. 110.
  • Hugh L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
  • Donald J. Newman, A Problem Seminar, Springer; see Problem #89.
  • Vladimir S. Shevelev, On some identities connected with the partition of the positive integers with respect to the Morse sequence, Izv. Vuzov of the North-Caucasus region, Nature sciences 4 (1997), 21-23 (Russian).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A000069 (the odious numbers). Cf. A133009.
a(n)=2*n+A010060(n)=A000069(n)-(-1)^A010060(n). Cf. A018900.
The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015.
Cf. A036585 (differences), A010060, A006364.
For primes see A027699, also A130593.

Programs

  • Haskell
    a001969 n = a001969_list !! (n-1)
    a001969_list = [x | x <- [0..], even $ a000120 x]
    -- Reinhard Zumkeller, Feb 01 2012
    
  • Magma
    [ n : n in [0..129] | IsEven(&+Intseq(n,2)) ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    s := proc(n) local i,j,ans; ans := [ ]; j := 0; for i from 0 while jA001969 := n->t1[n]; # s(k) gives first k terms.
    # Alternative:
    seq(`if`(add(k, k=convert(n,base,2))::even, n, NULL), n=0..129); # Peter Luschny, Jan 15 2021
    # alternative for use outside this sequence
    isA001969 := proc(n)
        add(d,d=convert(n,base,2)) ;
        type(%,'even') ;
    end proc:
    A001969 := proc(n)
        option remember ;
        local a;
        if n = 0 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA001969(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A001969(n),n=1..200) ; # R. J. Mathar, Aug 07 2022
  • Mathematica
    Select[Range[0,300], EvenQ[DigitCount[ #, 2][[1]]] &]
    a[ n_] := If[ n < 1, 0, With[{m = n - 1}, 2 m + Mod[-Total@IntegerDigits[m, 2], 2]]]; (* Michael Somos, Jun 09 2019 *)
  • PARI
    a(n)=n-=1; 2*n+subst(Pol(binary(n)),x,1)%2
    
  • PARI
    a(n)=if(n<1,0,if(n%2==0,a(n/2)+n,-a((n-1)/2)+3*n))
    
  • PARI
    a(n)=2*(n-1)+hammingweight(n-1)%2 \\ Charles R Greathouse IV, Mar 22 2013
    
  • Python
    def ok(n): return bin(n)[2:].count('1') % 2 == 0
    print(list(filter(ok, range(130)))) # Michael S. Branicky, Jun 02 2021
    
  • Python
    from itertools import chain, count, islice
    def A001969_gen(): # generator of terms
        return chain((0,),chain.from_iterable((sorted(n^ n<<1 for n in range(2**l,2**(l+1))) for l in count(0))))
    A001969_list = list(islice(A001969_gen(),30)) # Chai Wah Wu, Jun 29 2022
    
  • Python
    def A001969(n): return ((m:=n-1).bit_count()&1)+(m<<1) # Chai Wah Wu, Mar 03 2023

Formula

a(n+1) - A001285(n) = 2n-1 has been verified for n <= 400. - John W. Layman, May 16 2003 [This can be directly verified by comparing Ralf Stephan's formulas for this sequence (see below) and for A001285. - Jianing Song, Nov 04 2024]
Note that 2n+1 is in the sequence iff 2n is not and so this sequence has asymptotic density 1/2. - Franklin T. Adams-Watters, Aug 23 2006
a(n) = (1/2) * (4n - 3 - (-1)^A000120(n-1)). - Ralf Stephan, Sep 14 2003
G.f.: Sum_{k>=0} (t(3+2t+3t^2)/(1-t^2)^2) * Product_{l=0..k-1} (1-x^(2^l)), where t = x^2^k. - Ralf Stephan, Mar 25 2004
a(2*n+1) + a(2*n) = A017101(n-1) = 8*n-5.
a(2*n) - a(2*n-1) gives the Thue-Morse sequence (3, 1 version): 3, 1, 1, 3, 1, 3, 3, 1, 1, 3, .... A001969(n) + A000069(n) = A016813(n-1) = 4*n-3. - Philippe Deléham, Feb 04 2004
a(1) = 0; for n > 1: a(n) = 3*n-3 - a(n/2) if n even, a(n) = a((n+1)/2)+n-1 if n odd.
Let b(n) = 1 if sum of digits of n is even, -1 if it is odd; then Shallit (1985) showed that Product_{n>=0} ((2n+1)/(2n+2))^b(n) = 1/sqrt(2).
a(n) = 2n - 2 + A010060(n-1). - Franklin T. Adams-Watters, Aug 28 2006
A005590(a(n-1)) <= 0. - Reinhard Zumkeller, Apr 11 2012
A106400(a(n-1)) = 1. - Reinhard Zumkeller, Apr 29 2012
a(n) = (a(n-1) + 2) XOR A010060(a(n-1) + 2). - Falk Hüffner, Jan 21 2022
a(n+1) = A006068(n) XOR (2*A006068(n)). - Rémy Sigrist, Apr 14 2022

Extensions

More terms from Robin Trew (trew(AT)hcs.harvard.edu)

A048675 If n = p_i^e_i * ... * p_k^e_k, p_i < ... < p_k primes (with p_i = prime(i)), then a(n) = (1/2) * (e_i * 2^i + ... + e_k * 2^k).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 8, 3, 4, 5, 16, 4, 32, 9, 6, 4, 64, 5, 128, 6, 10, 17, 256, 5, 8, 33, 6, 10, 512, 7, 1024, 5, 18, 65, 12, 6, 2048, 129, 34, 7, 4096, 11, 8192, 18, 8, 257, 16384, 6, 16, 9, 66, 34, 32768, 7, 20, 11, 130, 513, 65536, 8, 131072, 1025, 12, 6, 36, 19
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

The original motivation for this sequence was to encode the prime factorization of n in the binary representation of a(n), each such representation being unique as long as this map is restricted to A005117 (squarefree numbers, resulting a permutation of nonnegative integers A048672) or any of its subsequence, resulting an injective function like A048623 and A048639.
However, also the restriction to A260443 (not all terms of which are squarefree) results a permutation of nonnegative integers, namely A001477, the identity permutation.
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443), then a(n) gives the evaluation of that polynomial at x=2.
The primitive completely additive integer sequence that satisfies a(n) = a(A225546(n)), n >= 1. By primitive, we mean that if b is another such sequence, then there is an integer k such that b(n) = k * a(n) for all n >= 1. - Peter Munn, Feb 03 2020
If the binary rank of an integer partition y is given by Sum_i 2^(y_i-1), and the Heinz number is Product_i prime(y_i), then a(n) is the binary rank of the integer partition with Heinz number n. Note the function taking a set s to Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices), and the function taking a multiset m to Product_i prime(m_i) is the inverse of A112798 (prime indices). - Gus Wiseman, May 22 2024

Examples

			From _Gus Wiseman_, May 22 2024: (Start)
The A018819(7) = 6 cases of binary rank 7 are the following, together with their prime indices:
   30: {1,2,3}
   40: {1,1,1,3}
   54: {1,2,2,2}
   72: {1,1,1,2,2}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
(End)
		

Crossrefs

Row 2 of A104244.
Similar logarithmic functions: A001414, A056239, A090880, A289506, A293447.
Left inverse of the following sequences: A000079, A019565, A038754, A068911, A134683, A260443, A332824.
A003961, A028234, A032742, A055396, A064989, A067029, A225546, A297845 are used to express relationship between terms of this sequence.
Cf. also A048623, A048676, A099884, A277896 and tables A277905, A285325.
Cf. A297108 (Möbius transform), A332813 and A332823 [= a(n) mod 3].
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000203,A331750), (A005940,A087808), (A007913,A248663), (A007947,A087207), (A097248,A048675), (A206296,A000129), (A248692,A056239), (A283477,A005187), (A284003,A006068), (A285101,A028362), (A285102,A068052), (A293214,A001065), (A318834,A051953), (A319991,A293897), (A319992,A293898), (A320017,A318674), (A329352,A069359), (A332461,A156552), (A332462,A156552), (A332825,A000010) and apparently (A163511,A135529).
See comments/formulas in A277333, A331591, A331740 giving their relationship to this sequence.
The formula section details how the sequence maps the terms of A329050, A329332.
A277892, A322812, A322869, A324573, A324575 give properties of the n-th term of this sequence.
The term k appears A018819(k) times.
The inverse transformation is A019565 (Heinz number of binary indices).
The version for distinct prime indices is A087207.
Numbers k such that a(k) is prime are A277319, counts A372688.
Grouping by image gives A277905.
A014499 lists binary indices of prime numbers.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359

Programs

  • Maple
    nthprime := proc(n) local i; if(isprime(n)) then for i from 1 to 1000000 do if(ithprime(i) = n) then RETURN(i); fi; od; else RETURN(0); fi; end; # nthprime(2) = 1, nthprime(3) = 2, nthprime(5) = 3, etc. - this is also A049084.
    A048675 := proc(n) local s,d; s := 0; for d in ifactors(n)[ 2 ] do s := s + d[ 2 ]*(2^(nthprime(d[ 1 ])-1)); od; RETURN(s); end;
    # simpler alternative
    f:= n -> add(2^(numtheory:-pi(t[1])-1)*t[2], t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Oct 10 2016
  • Mathematica
    a[1] = 0; a[n_] := Total[ #[[2]]*2^(PrimePi[#[[1]]]-1)& /@ FactorInteger[n] ]; Array[a, 100] (* Jean-François Alcover, Mar 15 2016 *)
  • PARI
    a(n) = my(f = factor(n)); sum(k=1, #f~, f[k,2]*2^primepi(f[k,1]))/2; \\ Michel Marcus, Oct 10 2016
    
  • PARI
    \\ The following program reconstructs terms (e.g. for checking purposes) from the factorization file prepared by Hans Havermann:
    v048675sigs = readvec("a048675.txt");
    A048675(n) = if(n<=2,n-1,my(prsig=v048675sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,ps[i]^es[i])); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        if n==1: return 0
        f=factorint(n)
        return sum([f[i]*2**(primepi(i) - 1) for i in f])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 19 2017

Formula

a(1) = 0, a(n) = 1/2 * (e1*2^i1 + e2*2^i2 + ... + ez*2^iz) if n = p_{i1}^e1*p_{i2}^e2*...*p_{iz}^ez, where p_i is the i-th prime. (e.g. p_1 = 2, p_2 = 3).
Totally additive with a(p^e) = e * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n). [Missing factor e added to the comment by Antti Karttunen, Jul 29 2015]
From Antti Karttunen, Jul 29 2015: (Start)
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n.]
a(1) = 0; for n > 1, a(n) = (A067029(n) * (2^(A055396(n)-1))) + a(A028234(n)).
Other identities. For all n >= 0:
a(A019565(n)) = n.
a(A260443(n)) = n.
a(A206296(n)) = A000129(n).
a(A005940(n+1)) = A087808(n).
a(A007913(n)) = A248663(n).
a(A007947(n)) = A087207(n).
a(A283477(n)) = A005187(n).
a(A284003(n)) = A006068(n).
a(A285101(n)) = A028362(1+n).
a(A285102(n)) = A068052(n).
Also, it seems that a(A163511(n)) = A135529(n) for n >= 1. (End)
a(1) = 0, a(2n) = 1+a(n), a(2n+1) = 2*a(A064989(2n+1)). - Antti Karttunen, Oct 11 2016
From Peter Munn, Jan 31 2020: (Start)
a(n^2) = a(A003961(n)) = 2 * a(n).
a(A297845(n,k)) = a(n) * a(k).
a(n) = a(A225546(n)).
a(A329332(n,k)) = n * k.
a(A329050(n,k)) = 2^(n+k).
(End)
From Antti Karttunen, Feb 02-25 2020, Feb 01 2021: (Start)
a(n) = Sum_{d|n} A297108(d) = Sum_{d|A225546(n)} A297108(d).
a(n) = a(A097248(n)).
For n >= 2:
A001221(a(n)) = A322812(n), A001222(a(n)) = A277892(n).
A000203(a(n)) = A324573(n), A033879(a(n)) = A324575(n).
For n >= 1, A331750(n) = a(A000203(n)).
For n >= 1, the following chains hold:
A293447(n) >= a(n) >= A331740(n) >= A331591(n).
a(n) >= A087207(n) >= A248663(n).
(End)
a(n) = A087207(A097248(n)). - Flávio V. Fernandes, Jul 16 2025

Extensions

Entry revised by Antti Karttunen, Jul 29 2015
More linking formulas added by Antti Karttunen, Apr 18 2017

A003188 Decimal equivalent of Gray code for n.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8, 24, 25, 27, 26, 30, 31, 29, 28, 20, 21, 23, 22, 18, 19, 17, 16, 48, 49, 51, 50, 54, 55, 53, 52, 60, 61, 63, 62, 58, 59, 57, 56, 40, 41, 43, 42, 46, 47, 45, 44, 36, 37, 39, 38, 34, 35, 33, 32, 96, 97, 99, 98, 102, 103, 101
Offset: 0

Views

Author

Keywords

Comments

Inverse of sequence A006068 considered as a permutation of the nonnegative integers, i.e., A006068(A003188(n)) = n = A003188(A006068(n)). - Howard A. Landman, Sep 25 2001
Restricts to a permutation of each {2^(i - 1) .. 2^i - 1}. - Jason Kimberley, Apr 02 2012
a(n) mod 2 = floor(((n + 1) mod 4) / 2), see also A021913. - Reinhard Zumkeller, Apr 28 2012
Invented by Emile Baudot (1845-1903), originally called a "cyclic-permuted" code. Gray codes are named after Frank Gray, who patented their use for shaft encoders in 1953. [F. Gray, "Pulse Code Communication", U.S. Patent 2,632,058, March 17, 1953.] - Robert G. Wilson v, Jun 22 2014
For n >= 2, let G_n be the graph whose vertices are labeled as 0,1,...,2^n-1, and two vertices are adjacent if and only if their binary expansions differ in exactly one bit, then a(0),a(1),...,a(2^n-1),a(0) is a Hamilton cycle in G_n. - Jianing Song, Jun 01 2022

Examples

			For n = 13, the binary reflected Gray code representation of n is '1011' and 1011_2 = 11_10. So, a(13) = 11. - _Indranil Ghosh_, Jan 23 2017
		

References

  • M. Gardner, Mathematical Games, Sci. Amer. Vol. 227 (No. 2, Feb. 1972), p. 107.
  • M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(2*A003714(n)) = 3*A003714(n) for all n. - Antti Karttunen, Apr 26 1999
Cf. A014550 (in binary), A055975 (first differences), A048724 (even bisection), A065621 (odd bisection).

Programs

  • C
    int a(int n) { return n ^ (n>>1); }
    
  • Haskell
    import Data.Bits (xor, shiftR)
    a003188 n = n `xor` (shiftR n 1) :: Integer
    -- Reinhard Zumkeller, May 26 2013, Apr 28 2012
    
  • Magma
    // A recursive algorithm
    N := 10; s := [[]];
    for n in [1..N] do
    for j in [#s..1 by -1] do
       Append(~s,Append(s[j],1));
       Append(~s[j],0);
    end for;
    end for;
    [SequenceToInteger(b,2):b in s]; // Jason Kimberley, Apr 02 2012
    
  • Magma
    // A direct algorithm
    I2B := func< i | [b eq 1: b in IntegerToSequence(i,2)]>;
    B2I := func< s | SequenceToInteger([b select 1 else 0:b in s],2)>;
    [B2I(Xor(I2B(i),I2B(i div 2)cat[false])):i in [1..127]]; //Jason Kimberley, Apr 02 2012
    
  • Maple
    with(combinat); graycode(6); # to produce first 64 terms
    printf(cat(` %.6d`$64), op(map(convert, graycode(6), binary))); lprint(); # to produce binary strings
    # alternative:
    read("transforms"):
    A003188 := proc(n)
        XORnos(n,floor(n/2)) ;
    end proc: # R. J. Mathar, Mar 09 2015
    # another Maple program:
    a:= n-> Bits[Xor](n, iquo(n, 2)):
    seq(a(n), n=0..70);  # Alois P. Heinz, Aug 16 2020
  • Mathematica
    f[n_] := BitXor[n, Floor[n/2]]; Array[f, 70, 0] (* Robert G. Wilson v, Jun 09 2010 *)
  • PARI
    a(n)=bitxor(n,n>>1);
    
  • PARI
    a(n)=sum(k=1,n,(-1)^((k/2^valuation(k,2)-1)/2)*2^valuation(k,2))
    
  • Python
    def A003188(n):
        return int(bin(n^(n//2))[2:],2) # Indranil Ghosh, Jan 23 2017
    
  • Python
    def A003188(n): return n^ n>>1 # Chai Wah Wu, Jun 29 2022
    
  • R
    maxn <- 63 # by choice
    a <- 1
    for(n in 1:maxn){ a[2*n  ] <- 2*a[n] + (n%%2 != 0)
                      a[2*n+1] <- 2*a[n] + (n%%2 == 0)}
    (a <- c(0,a))
    # Yosu Yurramendi, Apr 10 2020
    (C#)
    static uint a(this uint n) => (n >> 1) ^ n; // Frank Hollstein, Mar 12 2021

Formula

a(n) = 2*a(floor(n/2)) + A021913(n - 1). - Henry Bottomley, Apr 05 2001
a(n) = n XOR floor(n/2), where XOR is the binary exclusive OR operator. - Paul D. Hanna, Jun 04 2002
G.f.: (1/(1-x)) * Sum_{k>=0} 2^k*x^2^k/(1 + x^2^(k+1)). - Ralf Stephan, May 06 2003
a(0) = 0, a(2n) = 2a(n) + [n odd], a(2n + 1) = 2a(n) + [n even]. - Ralf Stephan, Oct 20 2003
a(0) = 0, a(n) = 2 a(floor(n/2)) + mod(floor((n + 1)/2), 2).
a(n) = Sum_{k=1..n} 2^A007814(k) * (-1)^((k/2^A007814(k) - 1)/2). - Ralf Stephan, Oct 29 2003
a(0) = 0, a(n + 1) = a(n) XOR 2^A007814(n) - Jaume Simon Gispert (jaume(AT)nuem.com), Sep 11 2004
Inverse of sequence A006068. - Philippe Deléham, Apr 29 2005
a(n) = a(n-1) XOR A006519(n). - Franklin T. Adams-Watters, Jul 18 2011
From Mikhail Kurkov, Sep 27 2023: (Start)
a(2^m + k) = a(2^m - k - 1) + 2^m for 0 <= k < 2^m, m >= 0.
a(n) = a(A053645(A054429(n))) + A053644(n) for n > 0.
a(n) = A063946(a(A053645(n)) + A053644(n)) for n > 0. (End)

A278222 The least number with the same prime signature as A005940(n+1).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 4, 8, 2, 6, 6, 12, 4, 12, 8, 16, 2, 6, 6, 12, 6, 30, 12, 24, 4, 12, 12, 36, 8, 24, 16, 32, 2, 6, 6, 12, 6, 30, 12, 24, 6, 30, 30, 60, 12, 60, 24, 48, 4, 12, 12, 36, 12, 60, 36, 72, 8, 24, 24, 72, 16, 48, 32, 64, 2, 6, 6, 12, 6, 30, 12, 24, 6, 30, 30, 60, 12, 60, 24, 48, 6, 30, 30, 60, 30, 210, 60, 120, 12, 60, 60, 180, 24, 120, 48, 96, 4, 12, 12
Offset: 0

Views

Author

Antti Karttunen, Nov 15 2016

Keywords

Comments

This sequence can be used for filtering certain base-2 related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A005940(n+1)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Because the Doudna map n -> A005940(1+n) is an isomorphism from "unary-binary encoding of factorization" (see A156552) to the ordinary representation of the prime factorization of n, it follows that the equivalence classes of this sequence match with any such sequence b, where b(n) is computed from the lengths of 1-runs in the binary representation of n and the order of those 1-runs does not matter. Particularly, this holds for any sequence that is obtained as a "Run Length Transform", i.e., where b(n) = Product S(i), for some function S, where i runs through the lengths of runs of 1's in the binary expansion of n. See for example A227349.
However, this sequence itself is not a run length transform of any sequence (which can be seen for example from the fact that A046523 is not multiplicative).
Furthermore, this matches not only with sequences involving products of S(i), but with any sequence obtained with any commutative function applied cumulatively, like e.g., A000120 (binary weight, obtained in this case as Sum identity(i)), and A069010 (number of runs of 1's in binary representation of n, obtained as Sum signum(i)).

Crossrefs

Similar sequences: A278217, A278219 (other base-2 related variants), A069877 (base-10 related), A278226 (primorial base), A278234-A278236 (factorial base), A278243 (Stern polynomials), A278233 (factorization in ring GF(2)[X]), A046523 (factorization in Z).
Cf. also A286622 (rgs-transform of this sequence) and A286162, A286252, A286163, A286240, A286242, A286379, A286464, A286374, A286375, A286376, A286243, A286553 (various other sequences involving this sequence).
Sequences that partition N into same or coarser equivalence classes: too many to list all here (over a hundred). At least every sequence listed under index-entry "Run Length Transforms" is included (e.g., A227349, A246660, A278159), and also sequences like A000120 and A069010, and their combinations like A136277.

Programs

  • Mathematica
    f[n_, i_, x_] := Which[n == 0, x, EvenQ@ n, f[n/2, i + 1, x], True, f[(n - 1)/2, i, x Prime@ i]]; Array[If[# == 1, 1, Times @@ MapIndexed[ Prime[First[#2]]^#1 &, Sort[FactorInteger[#][[All, -1]], Greater]]] &@ f[# - 1, 1, 1] &, 99] (* Michael De Vlieger, May 09 2017 *)
  • PARI
    A046523(n)=factorback(primes(#n=vecsort(factor(n)[, 2], , 4)), n)
    a(n)=my(p=2, t=1); for(i=0,exponent(n), if(bittest(n,i), t*=p, p=nextprime(p+1))); A046523(t) \\ Charles R Greathouse IV, Nov 11 2021
  • Python
    from sympy import prime, factorint
    import math
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a005940(n): return b(n - 1)
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return a046523(a005940(n + 1)) # Indranil Ghosh, May 05 2017
    
  • Scheme
    (define (A278222 n) (A046523 (A005940 (+ 1 n))))
    

Formula

a(n) = A046523(A005940(1+n)).
a(n) = A124859(A278159(n)).
a(n) = A278219(A006068(n)).

Extensions

Misleading part of the name removed by Antti Karttunen, Apr 07 2022

A193231 Blue code for n: in binary coding of a polynomial over GF(2), substitute x+1 for x (see Comments for precise definition).

Original entry on oeis.org

0, 1, 3, 2, 5, 4, 6, 7, 15, 14, 12, 13, 10, 11, 9, 8, 17, 16, 18, 19, 20, 21, 23, 22, 30, 31, 29, 28, 27, 26, 24, 25, 51, 50, 48, 49, 54, 55, 53, 52, 60, 61, 63, 62, 57, 56, 58, 59, 34, 35, 33, 32, 39, 38, 36, 37, 45, 44, 46, 47, 40, 41, 43, 42, 85, 84, 86
Offset: 0

Views

Author

Keywords

Comments

This is a self-inverse permutation of the nonnegative integers.
The function "substitute x+1 for x" on polynomials over GF(2) is completely multiplicative.
What is the density of fixed points in this sequence? Do we get a different answer if we look only at irreducible polynomials?
From Antti Karttunen, Dec 27 2013: (Start)
As what comes to the above question, the number of fixed points in range [2^(n-1),(2^n)-1] of the sequence is given by A131575(n). In range [0,0] there is one fixed point: 0, in range [1,1] there is also one: 1, in range [2,3] there are no fixed points, in range [4,7] there are two fixed points: 6 and 7, and so on. (Cf. also the C-code given in A118666.)
Similarly, the number of cycles in such ranges begins as 1, 1, 1, 3, 4, 10, 16, 36, 64, 136, ... which is A051437 shifted two steps right (prepended with 1's): Because the sequence is a self-inverse permutation, the number of its cycles in range [2^(n-1),(2^n)-1] is computed as: cycles(n) = (A011782(n)-number_of_fixedpoints(n))/2 + number_of_fixedpoints(n), which matches with the identity: A051437(n-2) = (A011782(n)-A131575(n))/2 + A131575(n), for n>=2.
In OEIS terms, the above comment about multiplicativeness can be rephrased as: a(A048720(x,y)) = A048720(a(x),a(y)) for all integers x, y >= 0. Here A048720(x,y) gives the product of carryless binary multiplication of x and y.
The permutation conjugates between Gray code and its inverse: A003188(n) = a(A006068(a(n))) and A006068(n) = a(A003188(a(n))) [cf. the identity 1.19-9d: gB = Bg^{-1} given on page 53 of fxtbook].
Because of the multiplicativity, the subset of irreducible (and respectively: composite) polynomials over GF(2) is closed under this permutation. Cf. the following mappings: a(A014580(n)) = A234750(n) and a(A091242(n)) = A234745(n).
(End)

Examples

			11, binary 1011, corresponds to polynomial x^3+x+1, substituting: (x+1)^3+(x+1)+1 = x^3+x^2+x+1 + x+1 + 1 = x^3+x^2+1, binary 1101 = decimal 13, so a(11) = 13.
From _Tilman Piesk_, Jun 26 2025: (Start)
The binary exponents of 11 are {0, 1, 3}, because 11 = 2^0 + 2^1 + 2^3.
a(11) = A001317(0) XOR A001317(1) XOR A001317(3) = 1 XOR 3 XOR 15 = 13. (End)
		

Crossrefs

Cf. A000069, A001969, A001317, A003987, A048720, A048724, A065621, A051437, A118666 (fixed points), A131575, A234022 (the number of 1-bits), A234023, A010060, A234745, A234750.
Similarly constructed permutation pairs: A003188/A006068, A135141/A227413, A232751/A232752, A233275/A233276, A233277/A233278, A233279/A233280.
Other permutations based on this (by conjugating, composing, etc): A234024, A234025/A234026, A234027, A234612, A234613, A234747, A234748, A244987, A245812, A245454.

Programs

  • Mathematica
    f[n_] := Which[0 <= # <= 1, #, EvenQ@ #, BitXor[2 #, #] &[f[#/2]], True, BitXor[#, 2 # + 1] &[f[(# - 1)/2]]] &@ Abs@ n; Table[f@ n, {n, 0, 66}] (* Michael De Vlieger, Feb 12 2016, after Robert G. Wilson v at A048724 and A065621 *)
  • PARI
    tox(n) = local(x=Mod(1,2)*X, xp=1, r); while(n>0,if(n%2,r+=xp);xp*=x;n\=2);r
    a(n)=subst(lift(subst(tox(n),X,X+1)),X,2)
    
  • PARI
    a(n)={local(x='x);subst(lift(Mod(1,2)*subst(Pol(binary(n),x),x,1+x)),x,2)};
    
  • Python
    def a065621(n): return n^(2*(n - (n&-n)))
    def a048724(n): return n^(2*n)
    l=[0, 1]
    for n in range(2, 101):
        if n%2==0: l.append(a048724(l[n//2]))
        else: l.append(a065621(1 + l[(n - 1)//2]))
    print(l) # Indranil Ghosh, Jun 04 2017
  • Scheme
    ;; with memoizing macro definec available in Antti Karttunen's IntSeq-library:
    (define (A193231 n) (let loop ((n n) (i 0) (s 0)) (cond ((zero? n) s) ((even? n) (loop (/ n 2) (+ 1 i) s)) (else (loop (/ (- n 1) 2) (+ 1 i) (A003987bi s (A001317 i))))))) ;; A003987bi implements binary XOR, A003987.
    ;; Antti Karttunen, Dec 27 2013
    
  • Scheme
    ;; With memoizing macro definec available in Antti Karttunen's IntSeq-library.
    ;; Alternative implementation, a recurrence based on entangling even & odd numbers with complementary pair A048724 and A065621:
    (definec (A193231 n) (cond ((< n 2) n) ((even? n) (A048724 (A193231 (/ n 2)))) (else (A065621 (+ (A193231 (/ (- n 1) 2)) 1)))))
    ;; Antti Karttunen, Dec 27 2013
    

Formula

From Antti Karttunen, Dec 27 2013: (Start)
a(0) = 0, and for any n = 2^a + 2^b + ... + 2^c, a(n) = A001317(a) XOR A001317(b) XOR ... XOR A001317(c), where XOR is bitwise XOR (A003987) and all the exponents a, b, ..., c are distinct, that is, they are the indices of 1-bits in the binary representation of n.
From above it follows, because all terms of A001317 are odd, that A000035(a(n)) = A010060(n) = A000035(a(2n)). Conversely, we also have A010060(a(n)) = A000035(n). Thus the permutation maps any even number to some evil number, A001969 (and vice versa), like it maps any odd number to some odious number, A000069 (and vice versa).
a(0)=0, a(1)=1, and for n>1, a(2n) = A048724(a(n)), a(2n+1) = A065621(1+a(n)). [A recurrence based on entangling even & odd numbers with the complementary pair A048724/A065621]
For all n, abs(a(2n)-a(2n+1)) = 1.
a(A000079(n)) = A001317(n).
(End)
It follows from the first paragraph above that a(A003987(n,k)) = A003987(a(n), a(k)), that is a(n XOR k) = a(n) XOR a(k). - Peter Munn, Nov 27 2019

A052330 Let S_k denote the first 2^k terms of this sequence and let b_k be the smallest positive integer that is not in S_k; then the numbers b_k*S_k are the next 2^k terms.

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 24, 5, 10, 15, 30, 20, 40, 60, 120, 7, 14, 21, 42, 28, 56, 84, 168, 35, 70, 105, 210, 140, 280, 420, 840, 9, 18, 27, 54, 36, 72, 108, 216, 45, 90, 135, 270, 180, 360, 540, 1080, 63, 126, 189, 378, 252, 504, 756, 1512, 315, 630, 945, 1890
Offset: 0

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

Inverse of sequence A064358 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001
This sequence is not exactly a permutation because it has offset 0 but doesn't contain 0. A052331 is its exact inverse, which has offset 1 and contains 0. See also A064358.
Are there any other values of n besides 4 and 36 with a(n) = n? - Thomas Ordowski, Apr 01 2005
4 = 100 = 4^1 * 3^0 * 2^0, 36 = 100100 = 9^1 * 7^0 * 5^0 * 4^1 * 3^0 * 2^0. - Thomas Ordowski, May 26 2005
Ordering of positive integers by increasing "Fermi-Dirac representation", which is a representation of the "Fermi-Dirac factorization", term implying that each prime power with a power of two as exponent may appear at most once in the "Fermi-Dirac factorization" of n. (Cf. comment in A050376; see also the OEIS Wiki page.) - Daniel Forgues, Feb 11 2011
The subsequence consisting of the squarefree terms is A019565. - Peter Munn, Mar 28 2018
Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH-number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k). A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. Then a(n) is the number whose binary indices are the parts of the strict integer partition with FDH-number n. - Gus Wiseman, Aug 19 2019
The set of indices of odd-valued terms has asymptotic density 0. In this sense (using the order they appear in this permutation) 100% of numbers are even. - Peter Munn, Aug 26 2019

Examples

			Terms following 5 are 10, 15, 30, 20, 40, 60, 120; this is followed by 7 as 6 has already occurred. - _Philippe Deléham_, Jun 03 2015
From _Antti Karttunen_, Apr 13 2018, after also _Philippe Deléham_'s Jun 03 2015 example: (Start)
This sequence can be regarded also as an irregular triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., that is, it can be represented as a binary tree, where each left hand child contains A300841(k), and each right hand child contains 2*A300841(k), when their parent contains k:
                                     1
                                     |
                  ...................2...................
                 3                                       6
       4......../ \........8                  12......../ \........24
      / \                 / \                 / \                 / \
     /   \               /   \               /   \               /   \
    /     \             /     \             /     \             /     \
   5       10         15       30         20       40         60      120
  7 14   21  42     28  56   84  168    35  70  105  210   140 280  420 840
  etc.
Compare also to trees like A005940 and A283477, and sequences A207901 and A302783.
(End)
		

Crossrefs

Subsequences: A019565 (squarefree terms), A050376 (the left edge from 2 onward), A336882 (odd terms).

Programs

  • Mathematica
    a = {1}; Do[a = Join[a, a*Min[Complement[Range[Max[a] + 1], a]]], {n, 1, 6}]; a (* Ivan Neretin, May 09 2015 *)
  • PARI
    up_to_e = 13; \\ Good for computing up to n = (2^13)-1
    v050376 = vector(up_to_e);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A050376(n) = v050376[n];
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); }; \\ Antti Karttunen, Apr 12 2018

Formula

a(0)=1; a(n+2^k)=a(n)*b(k) for n < 2^k, k = 0, 1, ... where b is A050376. - Thomas Ordowski, Mar 04 2005
The binary representation of n, n = Sum_{i=0..1+floor(log_2(n))} n_i * 2^i, n_i in {0,1}, is taken as the "Fermi-Dirac representation" (A182979) of a(n), a(n) = Product_{i=0..1+floor(log_2(n))} (b_i)^(n_i) where b_i is A050376(i), i.e., the i-th "Fermi-Dirac prime" (prime power with exponent being a power of 2). - Daniel Forgues, Feb 12 2011
From Antti Karttunen, Apr 12 & 17 2018: (Start)
a(0) = 1; a(2n) = A300841(a(n)), a(2n+1) = 2*A300841(a(n)).
a(n) = A207901(A006068(n)) = A302783(A003188(n)) = A302781(A302845(n)).
(End)

Extensions

Entry revised Mar 17 2005 by N. J. A. Sloane, based on comments from several people, especially David Wasserman and Thomas Ordowski

A283477 If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 180, 360, 210, 420, 1260, 2520, 6300, 12600, 37800, 75600, 2310, 4620, 13860, 27720, 69300, 138600, 415800, 831600, 485100, 970200, 2910600, 5821200, 14553000, 29106000, 87318000, 174636000, 30030, 60060, 180180, 360360, 900900, 1801800, 5405400, 10810800, 6306300, 12612600, 37837800, 75675600
Offset: 0

Views

Author

Antti Karttunen, Mar 16 2017

Keywords

Comments

a(n) = Product of distinct primorials larger than one, obtained as Product_{i} A002110(1+i), where i ranges over the zero-based positions of the 1-bits present in the binary representation of n.
This sequence can be represented as a binary tree. Each child to the left is obtained as A283980(k), and each child to the right is obtained as 2*A283980(k), when their parent contains k:
1
|
...................2....................
6 12
30......../ \........60 180......../ \......360
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
210 420 1260 2520 6300 12600 37800 75600
etc.

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 43}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A283477(n) = prod(i=0,exponent(n),if(bittest(n,i),vecprod(primes(1+i)),1)) \\ Edited by M. F. Hasler, Nov 11 2019
    
  • Python
    from sympy import prime, primerange, factorint
    from operator import mul
    from functools import reduce
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a108951(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after Chai Wah Wu
    def a(n): return a108951(a019565(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017
    
  • Python
    from sympy import primorial
    from math import prod
    def A283477(n): return prod(primorial(i) for i, b in enumerate(bin(n)[:1:-1],1) if b =='1') # Chai Wah Wu, Dec 08 2022
  • Scheme
    (define (A283477 n) (A108951 (A019565 n)))
    ;; Recursive "binary tree" implementation, using memoization-macro definec:
    (definec (A283477 n) (cond ((zero? n) 1) ((even? n) (A283980 (A283477 (/ n 2)))) (else (* 2 (A283980 (A283477 (/ (- n 1) 2)))))))
    

Formula

a(0) = 1; a(2n) = A283980(a(n)), a(2n+1) = 2*A283980(a(n)).
Other identities. For all n >= 0 (or for n >= 1):
a(2n+1) = 2*a(2n).
a(n) = A108951(A019565(n)).
A097248(a(n)) = A283475(n).
A007814(a(n)) = A051903(a(n)) = A000120(n).
A001221(a(n)) = A070939(n).
A001222(a(n)) = A029931(n).
A048675(a(n)) = A005187(n).
A248663(a(n)) = A006068(n).
A090880(a(n)) = A283483(n).
A276075(a(n)) = A283984(n).
A276085(a(n)) = A283985(n).
A046660(a(n)) = A124757(n).
A056169(a(n)) = A065120(n). [seems to be]
A005361(a(n)) = A284001(n).
A072411(a(n)) = A284002(n).
A007913(a(n)) = A284003(n).
A000005(a(n)) = A284005(n).
A324286(a(n)) = A324287(n).
A276086(a(n)) = A324289(n).
A267263(a(n)) = A324341(n).
A276150(a(n)) = A324342(n). [subsequences in the latter are converging towards this sequence]
G.f.: Product_{k>=0} (1 + prime(k + 1)# * x^(2^k)), where prime()# = A002110. - Ilya Gutkovskiy, Aug 19 2019

Extensions

More formulas and the binary tree illustration added by Antti Karttunen, Mar 19 2017
Four more linking formulas added by Antti Karttunen, Feb 25 2019

A153141 Permutation of nonnegative integers: A059893-conjugate of A153151.

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 4, 5, 15, 14, 12, 13, 8, 9, 10, 11, 31, 30, 28, 29, 24, 25, 26, 27, 16, 17, 18, 19, 20, 21, 22, 23, 63, 62, 60, 61, 56, 57, 58, 59, 48, 49, 50, 51, 52, 53, 54, 55, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 127, 126, 124, 125, 120, 121
Offset: 0

Views

Author

Antti Karttunen, Dec 20 2008

Keywords

Comments

This permutation is induced by a wreath recursion a = s(a,b), b = (b,b) (i.e., binary transducer, where s means that the bits at that state are toggled: 0 <-> 1) given on page 103 of the Bondarenko, Grigorchuk, et al. paper, starting from the active (swapping) state a and rewriting bits from the second most significant bit to the least significant end, continuing complementing as long as the first 1-bit is reached, which is the last bit to be complemented.
The automorphism group of infinite binary tree (isomorphic to an infinitely iterated wreath product of cyclic groups of two elements) embeds naturally into the group of "size-preserving Catalan bijections". Scheme-function psi gives an isomorphism that maps this kind of permutation to the corresponding Catalan automorphism/bijection (that acts on S-expressions). The following identities hold: *A069770 = psi(A063946) (just swap the left and right subtrees of the root), *A057163 = psi(A054429) (reflect the whole tree), *A069767 = psi(A153141), *A069768 = psi(A153142), *A122353 = psi(A006068), *A122354 = psi(A003188), *A122301 = psi(A154435), *A122302 = psi(A154436) and from *A154449 = psi(A154439) up to *A154458 = psi(A154448). See also comments at A153246 and A153830.
a(1) to a(2^n) is the sequence of row sequency numbers in a Hadamard-Walsh matrix of order 2^n, when constructed to give "dyadic" or Payley sequency ordering. - Ross Drewe, Mar 15 2014
In the Stern-Brocot enumeration system for positive rationals (A007305/A047679), this permutation converts the denominator into the numerator: A007305(n) = A047679(a(n)). - Yosu Yurramendi, Aug 01 2020

Examples

			18 = 10010 in binary and after complementing the second, third and fourth most significant bits at positions 3, 2 and 1, we get 1110, at which point we stop (because bit-1 was originally 1) and fix the rest, so we get 11100 (28 in binary), thus a(18)=28. This is the inverse of "binary adding machine". See pages 8, 9 and 103 in the Bondarenko, Grigorchuk, et al. paper.
19 = 10011 in binary. By complementing bits in (zero-based) positions 3, 2 and 1 we get 11101 in binary, which is 29 in decimal, thus a(19)=29.
		

Crossrefs

Inverse: A153142. a(n) = A059893(A153151(A059893(n))) = A059894(A153152(A059894(n))) = A154440(A154445(n)) = A154442(A154443(n)). Corresponds to A069767 in the group of Catalan bijections. Cf. also A154435-A154436, A154439-A154448, A072376.
Differs from A006068 for the first time at n=14, where a(14)=10 while A006068(14)=11.
A240908-A240910 these give "natural" instead of "dyadic" sequency ordering values for Hadamard-Walsh matrices, orders 8,16,32. - Ross Drewe, Mar 15 2014

Programs

  • Python
    def ok(n): return n&(n - 1)==0
    def a153151(n): return n if n<2 else 2*n - 1 if ok(n) else n - 1
    def A(n): return (int(bin(n)[2:][::-1], 2) - 1)/2
    def msb(n): return n if n<3 else msb(n/2)*2
    def a059893(n): return A(n) + msb(n)
    def a(n): return 0 if n==0 else a059893(a153151(a059893(n))) # Indranil Ghosh, Jun 09 2017
    
  • R
    maxlevel <- 5 # by choice
    a <- 1
    for(m in 1:maxlevel){
    a[2^m    ] <- 2^(m+1) - 1
    a[2^m + 1] <- 2^(m+1) - 2
    for (k in 1:(2^m-1)){
       a[2^(m+1) + 2*k    ] <- 2*a[2^m + k]
       a[2^(m+1) + 2*k + 1] <- 2*a[2^m + k] + 1}
    }
    a <- c(0,a)
    # Yosu Yurramendi, Aug 01 2020

Formula

Conjecture: a(n) = f(a(f(a(A053645(n)))) + A053644(n)) for n > 0 where f(n) = A054429(n) for n > 0 with f(0) = 0. - Mikhail Kurkov, Oct 02 2023
From Mikhail Kurkov, Dec 22 2023: (Start)
a(n) < 2^k iff n < 2^k for k >= 0.
Conjectured formulas:
a(2^m + k) = f(2^m + f(k)) for m >= 0, 0 <= k < 2^m with a(0) = 0.
a(n) = f(A153142(f(n))) for n > 0 with a(0) = 0. (End)

A248663 Binary encoding of the prime factors of the squarefree part of n.

Original entry on oeis.org

0, 1, 2, 0, 4, 3, 8, 1, 0, 5, 16, 2, 32, 9, 6, 0, 64, 1, 128, 4, 10, 17, 256, 3, 0, 33, 2, 8, 512, 7, 1024, 1, 18, 65, 12, 0, 2048, 129, 34, 5, 4096, 11, 8192, 16, 4, 257, 16384, 2, 0, 1, 66, 32, 32768, 3, 20, 9, 130, 513, 65536, 6, 131072, 1025, 8, 0, 36, 19
Offset: 1

Views

Author

Peter Kagey, Jan 11 2015

Keywords

Comments

The binary digits of a(n) encode the prime factorization of A007913(n), where the i-th digit from the right is 1 if and only if prime(i) divides A007913(n), otherwise 0. - Robert Israel, Jan 12 2015
Old name: a(1) = 0; a(A000040(n)) = 2^(n-1), and a(n*m) = a(n) XOR a(m).
XOR is the bitwise exclusive or operation (A003987).
a(k^2) = 0 for a natural number k.
Equivalently, the i-th binary digit from the right is 1 iff prime(i) divides n an odd number of times, otherwise zero. - Ethan Beihl, Oct 15 2016
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443, with scheme explained in A206284), then A048675(n) gives the evaluation of that polynomial at x=2. This sequence is otherwise similar, except the polynomial is evaluated over the field GF(2), which implies also that all its coefficients are essentially reduced modulo 2. - Antti Karttunen, Dec 11 2015
Squarefree numbers (A005117) give the positions k where a(k) = A048675(k). - Antti Karttunen, Oct 29 2016
From Peter Munn, Jun 07 2021: (Start)
When we encode polynomials with nonnegative integer coefficients as described by Antti Karttunen above, polynomial addition is represented by integer multiplication, multiplication is represented by A297845(.,.), and this sequence represents a surjective semiring homomorphism to polynomials in GF(2)[x] (encoded as described in A048720). The mapping of addition operations by this homomorphism is part of the sequence definition: "a(n*m) = a(n) XOR a(m)". The mapping of multiplication is given by a(A297845(n, k)) = A048720(a(n), a(k)).
In a related way, A329329 defines a representation of a different set of polynomials as positive integers, namely polynomials in GF(2)[x,y].
Let P_n(x,y) denote the polynomial represented, as in A329329, by n >= 1. If 0 is substituted for y in P_n(x,y), we get a polynomial P'_n(x,y) (in which y does not appear, of course) that is equivalent to a polynomial P'_n(x) in GF(2)[x]. a(n) is the integer encoding of P'_n(x) (described in A048720).
Viewed as above, this sequence represents another surjective homomorphism, a homomorphism between polynomial rings, with A329329(.,.)/A059897(.,.) and A048720(.,.)/A003987(.,.) as the respective ring operations.
a(n) can be composed as a(n) = A048675(A007913(n)) and the effect of the A007913(.) component corresponds to different operations on the respective polynomial domains of the two homomorphisms described above. In the first homomorphism, coefficients are reduced modulo 2; in the second, 0 is substituted for y. This is illustrated in the examples.
(End)

Examples

			a(3500) = a(2^2 * 5^3 * 7) = a(2) XOR a(2) XOR a(5) XOR a(5) XOR a(5) XOR a(7) = 1 XOR 1 XOR 4 XOR 4 XOR 4 XOR 8 = 0b0100 XOR 0b1000 = 0b1100 = 12.
From _Peter Munn_, Jun 07 2021: (Start)
The examples in the table below illustrate the homomorphisms (between polynomial structures) represented by this sequence.
The staggering of the rows is to show how the mapping n -> A007913(n) -> A048675(A007913(n)) = a(n) relates to the encoded polynomials, as not all encodings are relevant at each stage.
For an explanation of each polynomial encoding, see the sequence referenced in the relevant column heading. (Note also that A007913 generates squarefree numbers, and with these encodings, all squarefree numbers represent equivalent polynomials in N[x] and GF(2)[x,y].)
                     |<-----    encoded polynomials    ----->|
  n  A007913(n) a(n) |         N[x]    GF(2)[x,y]    GF(2)[x]|
                     |Cf.:  A206284       A329329     A048720|
--------------------------------------------------------------
  24                            x+3         x+y+1
          6                     x+1           x+1
                  3                                       x+1
--------------------------------------------------------------
  36                           2x+2          xy+y
          1                       0             0
                  0                                         0
--------------------------------------------------------------
  60                        x^2+x+2       x^2+x+y
         15                   x^2+x         x^2+x
                  6                                     x^2+x
--------------------------------------------------------------
  90                       x^2+2x+1      x^2+xy+1
         10                   x^2+1         x^2+1
                  5                                     x^2+1
--------------------------------------------------------------
This sequence is a left inverse of A019565. A019565(.) maps a(n) to A007913(n) for all n, effectively reversing the second stage of the mapping from n to a(n) shown above. So, with the encodings used here, A019565(.) represents each of two injective homomorphisms that map polynomials in GF(2)[x] to equivalent polynomials in N[x] and GF(2)[x,y] respectively.
(End)
		

Crossrefs

A048675 composed with A007913. A007814 composed with A225546.
A left inverse of A019565.
Other sequences used to express relationship between terms of this sequence: A003961, A007913, A331590, A334747.
Cf. also A099884, A277330.
A087207 is the analogous sequence with OR.
A277417 gives the positions where coincides with A277333.
A000290 gives the positions of zeros.

Programs

  • Haskell
    import Data.Bits (xor)
    a248663 = foldr (xor) 0 . map (\i -> 2^(i - 1)) . a112798_row
    -- Peter Kagey, Sep 16 2016
    
  • Maple
    f:= proc(n)
    local F,f;
    F:= select(t -> t[2]::odd, ifactors(n)[2]);
    add(2^(numtheory:-pi(f[1])-1), f = F)
    end proc:
    seq(f(i),i=1..100); # Robert Israel, Jan 12 2015
  • Mathematica
    a[1] = 0; a[n_] := a[n] = If[PrimeQ@ n, 2^(PrimePi@ n - 1), BitXor[a[#], a[n/#]] &@ FactorInteger[n][[1, 1]]]; Array[a, 66] (* Michael De Vlieger, Sep 16 2016 *)
  • PARI
    A248663(n) = vecsum(apply(p -> 2^(primepi(p)-1),factor(core(n))[,1])); \\ Antti Karttunen, Feb 15 2021
    
  • Python
    from sympy import factorint, primepi
    from sympy.ntheory.factor_ import core
    def a048675(n):
        f=factorint(n)
        return 0 if n==1 else sum([f[i]*2**(primepi(i) - 1) for i in f])
    def a(n): return a048675(core(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 21 2017
  • Ruby
    require 'prime'
    def f(n)
      a = 0
      reverse_primes = Prime.each(n).to_a.reverse
      reverse_primes.each do |prime|
        a <<= 1
        while n % prime == 0
          n /= prime
          a ^= 1
        end
      end
      a
    end
    (Scheme, with memoizing-macro definec)
    (definec (A248663 n) (cond ((= 1 n) 0) ((= 1 (A010051 n)) (A000079 (- (A000720 n) 1))) (else (A003987bi (A248663 (A020639 n)) (A248663 (A032742 n)))))) ;; Where A003987bi computes bitwise-XOR as in A003987.
    ;; Alternatively:
    (definec (A248663 n) (cond ((= 1 n) 0) (else (A003987bi (A000079 (- (A055396 n) 1)) (A248663 (A032742 n))))))
    ;; Antti Karttunen, Dec 11 2015
    

Formula

a(1) = 0; for n > 1, if n is a prime, a(n) = 2^(A000720(n)-1), otherwise a(A020639(n)) XOR a(A032742(n)). [After the definition.] - Antti Karttunen, Dec 11 2015
For n > 1, this simplifies to: a(n) = 2^(A055396(n)-1) XOR a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n. Cf. a similar formula for A048675.]
Other identities and observations. For all n >= 0:
a(n) = A048672(A100112(A007913(n))). - Peter Kagey, Dec 10 2015
From Antti Karttunen, Dec 11 2015, Sep 19 & Oct 27 2016, Feb 15 2021: (Start)
a(n) = a(A007913(n)). [The result depends only on the squarefree part of n.]
a(n) = A048675(A007913(n)).
a(A206296(n)) = A168081(n).
a(A260443(n)) = A264977(n).
a(A265408(n)) = A265407(n).
a(A275734(n)) = A275808(n).
a(A276076(n)) = A276074(n).
a(A283477(n)) = A006068(n).
(End)
From Peter Munn, Jan 09 2021 and Apr 20 2021: (Start)
a(n) = A007814(A225546(n)).
a(A019565(n)) = n; A019565(a(n)) = A007913(n).
a(A003961(n)) = 2 * a(n).
a(A297845(n, k)) = A048720(a(n), a(k)).
a(A329329(n, k)) = A048720(a(n), a(k)).
a(A059897(n, k)) = A003987(a(n), a(k)).
a(A331590(n, k)) = a(n) + a(k).
a(A334747(n)) = a(n) + 1.
(End)

Extensions

New name from Peter Munn, Nov 01 2023
Previous Showing 51-60 of 155 results. Next