cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 106 results. Next

A008978 a(n) = (5*n)!/(n!)^5.

Original entry on oeis.org

1, 120, 113400, 168168000, 305540235000, 623360743125120, 1370874167589326400, 3177459078523411968000, 7656714453153197981835000, 19010638202652030712978200000, 48334775757901219912115629238400, 125285878026462826569986857692288000
Offset: 0

Views

Author

Keywords

Comments

Number of paths of length 5n in Z^5 from (0,0,0,0,0) to (n,n,n,n,n).

Crossrefs

Programs

Formula

a(n) ~ 5^(5*n+1/2) / (4 * Pi^2 * n^2). - Vaclav Kotesovec, Mar 07 2014
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)*binomial(3*n,n)*binomial(4*n,n)*binomial(5*n,n) = ( [x^n](1 + x)^(2*n) ) * ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) * ( [x^n](1 + x)^(5*n) ) = [x^n]( F(x)^(120*n) ), where F(x) = 1 + x + 353*x^2 + 318986*x^3 + 408941594*x^4 + 633438203535*x^5 + 1105336091531052*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977, A186420 and A188662. (End)
From Peter Bala, Jul 17 2016: (Start)
a(n) = Sum_{k = 0..4*n} (-1)^k*binomial(5*n,n + k)*binomial(n + k,k)^5.
a(n) = Sum_{k = 0..5*n} (-1)^(n+k)*binomial(5*n,k)*binomial(n + k,k)^5. (End)
From Ilya Gutkovskiy, Nov 23 2017: (Start)
O.g.f.: 4F3(1/5,2/5,3/5,4/5; 1,1,1; 3125*x).
E.g.f.: 4F4(1/5,2/5,3/5,4/5; 1,1,1,1; 3125*x). (End)
From Peter Bala, Feb 16 2020: (Start)
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z*u)^n] (1 + x + y + z + u )^(5*n). (End)
a(n) = 120*A322252(n). - R. J. Mathar, Jun 21 2023
a(n) = a(n-1)*5*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4)/n^4. - Neven Sajko, Jul 21 2023

A187783 De Bruijn's triangle, T(m,n) = (m*n)!/(n!^m) read by downward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 20, 90, 24, 1, 1, 1, 70, 1680, 2520, 120, 1, 1, 1, 252, 34650, 369600, 113400, 720, 1, 1, 1, 924, 756756, 63063000, 168168000, 7484400, 5040, 1
Offset: 0

Views

Author

Robert G. Wilson v, Jan 05 2013

Keywords

Comments

From Tilman Piesk, Oct 28 2014: (Start)
Number of permutations of a multiset that contains m different elements n times. These multisets have the signatures A249543(m,n-1) for m>=1 and n>=2.
In an m-dimensional Pascal tensor (the generalization of a symmetric Pascal matrix) P(x1,...,xn) = (x1+...+xn)!/(x1!*...*xn!), so the main diagonal of an m-dimensional Pascal tensor is D(n) = (m*n)!/(n!^m). These diagonals are the rows of this array (with m>0), which begins like this:
m\n:0 1 2 3 4 5
0: 1 1 1 1 1 1 ... A000012;
1: 1 1 1 1 1 1 ... A000012;
2: 1 2 6 20 70 252 ... A000984;
3: 1 6 90 1680 34650 756756 ... A006480;
4: 1 24 2520 369600 63063000 11732745024 ... A008977;
5: 1 120 113400 168168000 305540235000 623360743125120 ... A008978;
6: 1 720 7484400 137225088000 3246670537110000 88832646059788350720 ... A008979;
with columns: A000142 (n=1), A000680 (n=2), A014606 (n=3), A014608 (n=4), A014609 (n=5).
A089759 is the transpose of this matrix. A034841 is its diagonal. A141906 is its lower triangle. A120666 is the upper triangle of this matrix with indices starting from 1. A248827 are the diagonal sums (or the row sums of the triangle).
(End)

Examples

			T(3,5) = (3*5)!/(5!^3) = 756756 = A014609(3) = A006480(5) is the number of permutations of a multiset that contains 3 different elements 5 times, e.g., {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3}.
		

Crossrefs

Cf. A089759 (transposed), A141906 (subtriangle), A120666 (subtriangle transposed), A060538 (1st row/column removed).
Main diagonal gives: A034841.
Row sums of the triangle: A248827.

Programs

  • Magma
    [Factorial(k*(n-k))/(Factorial(n-k))^k: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 26 2022
    
  • Mathematica
    T[n_, k_]:= (k*n)!/(n!)^k; Table[T[n, k-n], {k, 9}, {n, 0, k-1}]//Flatten
  • SageMath
    def A187783(n,k): return gamma(k*(n-k)+1)/(factorial(n-k))^k
    flatten([[A187783(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Dec 26 2022

Formula

T(m,n) = (m*n)!/(n!)^m.
A060540(m,n) = T(m,n)/m! . - R. J. Mathar, Jun 21 2023

Extensions

Row m=0 prepended by Tilman Piesk, Oct 28 2014

A188662 Binomial coefficients: a(n) = binomial(3*n,n)^2.

Original entry on oeis.org

1, 9, 225, 7056, 245025, 9018009, 344622096, 13521038400, 540917591841, 21966328580625, 902702926350225, 37456461988358400, 1566697064677290000, 65973795093338597136, 2794203818390077646400, 118933541228935777741056, 5084343623375056062840609
Offset: 0

Views

Author

Emanuele Munarini, Apr 07 2011

Keywords

Comments

Even-order terms in the diagonal of rational function 1/(1 - (x^2 + y^2 + z^2 - x*y - y*z - x*z)). - Gheorghe Coserea, Aug 09 2018

Crossrefs

Programs

  • Magma
    [Binomial(3*n,n)^2: n in [0..100]]; // Vincenzo Librandi, Apr 08 2011
    
  • Mathematica
    Table[Binomial[3 n, n]^2, {n, 0, 16}]
  • Maxima
    makelist(binomial(3*n,n)^2,n,0,16);
    
  • PARI
    a(n) = binomial(3*n,n)^2; \\ Michel Marcus, Nov 01 2016
    
  • Python
    from math import comb
    def A188662(n): return comb(3*n,n)**2 # Chai Wah Wu, Mar 15 2023

Formula

a(n) = A005809(n)^2.
a(n) = binomial(3*n,n)^2 = ( [x^n](1 + x)^(3*n) )^2 = [x^n](F(x)^(9*n)), where F(x) = 1 + x + 4*x^2 + 49*x^3 + 795*x^4 + 15180*x^5 + 320422*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977 and A186420. - Peter Bala, Jul 12 2016
a(n) ~ 3^(6*n+1)*4^(-2*n-1)/(Pi*n). - Ilya Gutkovskiy, Jul 13 2016
a(n) = Sum_{k=0..n} binomial(n, k)^2*binomial(3*n+k, 2*n). - Seiichi Manyama, Jan 09 2017

A113424 a(n) = (6*n)!/((3*n)!*(2*n)!*n!).

Original entry on oeis.org

1, 60, 13860, 4084080, 1338557220, 465817912560, 168470811709200, 62588625639883200, 23717177328413240100, 9124964373613212524400, 3553261127084984957001360, 1397224499394244497967972800, 553883078634868423069470550800, 221068174083308549543680044926400
Offset: 0

Views

Author

Michael Somos, Oct 31 2005

Keywords

Comments

Appears in Ramanujan's theory of elliptic functions of signature 6.
The family of elliptic curves "x=2*H=p^2+q^2-q^3, 0Bradley Klee, Feb 25 2018
The power series with coefficients a(n) * n! plays a central role in the Faber-Zagier relations on the moduli space of algebraic curves; see Pandharipande and Pixton, Section 0.2. - Harry Richman, Aug 19 2024

Examples

			G.f. = 1 + 60*x + 13860*x^2 + 4084080*x^3 + 1338557220*x^4 + ... - _Michael Somos_, Dec 02 2018
		

Crossrefs

a(n) = A347304(6*n)
Elliptic Integrals: A002894, A006480, A000897. Factors: A005809, A066802.
Cf. A188662.

Programs

  • GAP
    List([0..15],n->Factorial(6*n)/(Factorial(3*n)*Factorial(2*n)*Factorial(n))); # Muniru A Asiru, Apr 08 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/6, 5/6, 1, 432 x], {x, 0, n}];
    Table[Multinomial[n, 2 n, 3 n], {n, 0, 15}] (* Vladimir Reshetnikov, Oct 12 2016 *)
    a[ n_] := Multinomial[n, 2 n, 3 n]; (* Michael Somos, Dec 02 2018 *)
  • PARI
    {a(n) = if( n<0, 0, (6*n)! / ((3*n)! * (2*n)! * n!))};
    

Formula

G.f.: hypergeometric2F1(1/6, 5/6; 1; 432 * x).
a(n) ~ 432^n/(2*Pi*n). - Ilya Gutkovskiy, Oct 13 2016
a(n) = A005809(n)*A066802(n). - Bradley Klee, Feb 25 2018
0 = a(n)*(-267483013447680*a(n+2) +25577192448000*a(n+3) -204669037440*a(n+4) +372142500*a(n+5)) +a(n+1)*(+408751349760*a(n+2) -57870650880*a(n+3) +546809652*a(n+4) -1088188*a(n+5)) +a(n+2)*(-17884800*a(n+2) +21466920*a(n+3) - 295844*a(n+4) +693*a(n+5)) for all n in Z. - Michael Somos, May 16 2018
From Peter Bala, Feb 28 2020: (Start)
a(n) = C(6*n,2*n)*C(4*n,n).
a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k (apply Mestrovic, equation 39).
(-1)^n*a(n) = [x^(2*n)*y^(2*n)] ( (1 + x + y)*(1 - x + y) )^(4*n).
a(n) = [x^n] ( F(x) )^(60*n), where F(x) = 1 + x + 56*x^2 + 7355*x^3 + 1290319*x^4 + 264117464*x^5 + 59508459679*x^6 + ... appears to have integer coefficients. We conjecture that for k >= 1 the sequence defined by b_k(n) := [x^n] F(x)^(k*n) satisfies the above supercongruences for primes p >= 7. (End)
From Peter Bala, Mar 20 2022: (Start)
Right-hand side of the following identities valid for n >= 1:
Sum_{k = 0..2*n} 4*n*(4*n+k-1)!/(k!*n!*(3*n)!) = (6*n)!/((3*n)!*(2*n)!*n!);
Sum_{k = 0..3*n} 3*n*(3*n+k-1)!/(k!*n!*(2*n)!) = (6*n)!/((3*n)!(2*n)!*n!).
Cf. A001451. (End)
From Peter Bala, Feb 26 2023: (Start)
a(n) = (4^n/n!^2) * Product_{k = n..3*n-1} 2*k + 1.
a(n) = (12^n/n!^2) * Product_{k = 0..n-1} (6*k + 1)*(6*k + 5). (End)
a(n) = 12*(6*n - 1)*(6*n - 5)*a(n-1)/n^2. - Neven Sajko, Jul 19 2023
From Karol A. Penson, Dec 26 2023: (Start)
a(n) = Integral_{x=0..432} x^n*W(x) dx, n>=0, where W(x) = sqrt(18)*MeijerG([[], [0, 0]], [[-1/6, -5/6], []], x/432)/(1296*Pi), where MeijerG is the Meijer G - function.
Apparently, W(x) cannot be represented by any other function. W(x) is positive on x = [0, 432], it diverges at x=0, and monotonically decreases for x>0. It appears that at x=432, W(x) tends to a constant value close to 0.000368414. This integral representation as the n-th power moment of the positive function W(x) on the interval [0, 432] is unique, as W(x) is the solution of the Hausdorff moment problem. (End)
W(x) can be represented in terms of two 2F1 hypergeometric functions, W(x) = hypergeom([1/6, 1/6], [1/3], x/432)/(6*sqrt(Pi)*Gamma(2/3)*Gamma(5/6)*x^(5/6)) - Gamma(2/3)*Gamma(5/6)*sqrt(3)*hypergeom([5/6, 5/6], [5/3], x/432)/(1152*Pi^(5/2)*x^(1/6)), x on (0, 432). - Karol A. Penson, May 16 2025

A229451 G.f.: exp( Sum_{n>=1} (3*n)!/n!^3 * x^n/n ).

Original entry on oeis.org

1, 6, 63, 866, 13899, 246366, 4676768, 93322596, 1934035965, 41286407510, 902562584556, 20119266633060, 455832458083577, 10470568749165246, 243361203186769659, 5714294570067499930, 135377464019074334826, 3232534121305720233264, 77726654423445817800164
Offset: 0

Views

Author

Paul D. Hanna, Sep 23 2013

Keywords

Comments

The sixth root of the o.g.f. A(x)^(1/6) = 1 + x + 8*x^2 + 101*x^3 + 1569*x^4 + 27445*x^5 + ... appears to have integer coefficients. See A229452. More generally, if A(m,x) := exp( Sum_{n >= 1} (m*n)!/n!^m * x^n/n ), m = 1,2,3,..., then it can be shown that the expansion of A(m,x) has integer coefficients. We conjecture that the expansion of A(m,x)^(1/m!) also has integer coefficients. - Peter Bala, Feb 16 2020

Examples

			G.f.: A(x) = 1 + 6*x + 63*x^2 + 866*x^3 + 13899*x^4 + 246366*x^5 +...,
where
log(A(x)) = 6*x + 90*x^2/2 + 1680*x^3/3 + 34650*x^4/4 + 756756*x^5/5 +...+ A006480(n)*x^n/n + ....
		

Crossrefs

Cf. A229452, A006480 (de Bruijn's S(3,n)), A061401, A333042, A333043, A370288, A362732, A370289, A370293.

Programs

  • Mathematica
    CoefficientList[Series[Exp[6*x*HypergeometricPFQ[{1,1,4/3,5/3},{2,2,2},27*x]],{x,0,20}],x] (* Vaclav Kotesovec, Dec 25 2013 *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,(3*k)!/k!^3*x^k/k) +x*O(x^n)),n)}
    for(n=0,25,print1(a(n),", "))

Formula

a(n) ~ c * 3^(3*n)/n^2, where c = 2^11 * 3^(7/2) * Pi^5 * A370293^6 = 0.406436497... - Vaclav Kotesovec, Dec 25 2013, updated Feb 14 2024
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A006480(k) * a(n-k). - Seiichi Manyama, Feb 09 2024
From Peter Bala, Oct 24 2024: (Start)
Series reversion of x*A(-x) = x + 6*x^2 + 9*x^3 + 56*x^4 - 300*x^5 + 3942*x^6 - ... is the g.f. of A061401.
The g.f. A(x) satisfies [x^n] A(x)^n = A362732(n). (End)

A008979 a(n) = (6n)!/(n!)^6.

Original entry on oeis.org

1, 720, 7484400, 137225088000, 3246670537110000, 88832646059788350720, 2670177736637149247308800, 85722533226982363751829504000, 2889253496242619386328267523990000, 101097362223624462291180422369532000000, 3644153415887633116359073848179365185734400, 134567406165969006655507763343147223231094784000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(6*n)/Factorial(n)^6: n in [0..20]]; // Vincenzo Librandi, Aug 13 2014
    
  • Maple
    seq( (6*n)!/(n!)^6, n=0..20); # G. C. Greubel, Feb 17 2020
  • Mathematica
    Table[(6 n)!/(n)!^6, {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2014 *)
  • PARI
    vector(21, n, my(m=n-1); (6*m)!/(m!)^6 ) \\ G. C. Greubel, Feb 17 2020
    
  • Sage
    [factorial(6*n)/factorial(n)^6 for n in (0..20)] # G. C. Greubel, Feb 17 2020

Formula

From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)*binomial(3*n,n)*binomial(4*n,n)*
binomial(5*n,n)*binomial(6*n,n) = ( [x^n](1 + x)^(2*n) ) * ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) * ( [x^n](1 + x)^(5*n) ) * ( [x^n](1 + x)^(6*n) ) = [x^n](F(x)^(720*n)), where F(x) = 1 + x + 4478*x^2 + 53085611*x^3 + 926072057094*x^4 + 19977558181209910*x^5 + 493286693783478576177*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977, A008978, A186420 and A188662. (End)
a(n) ~ 3^(6*n+1/2)*4^(3*n-1)/(Pi*n)^(5/2). - Ilya Gutkovskiy, Jul 12 2016
From Peter Bala, Feb 14 2020: (Start)
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z*u*v)^n] (1 + x + y + z + u + v)^(6*n). (End)

A023978 Sum of exponents in prime-power factorization of multinomial coefficient M(3n; n,n,n).

Original entry on oeis.org

0, 2, 4, 7, 7, 9, 11, 14, 12, 13, 14, 19, 18, 20, 22, 23, 19, 23, 22, 27, 25, 25, 30, 33, 30, 30, 32, 33, 31, 34, 34, 38, 33, 34, 36, 38, 34, 37, 40, 42, 39, 42, 43, 50, 49, 48, 50, 54, 49, 50, 49, 51, 51, 53, 54, 55, 51, 53, 54, 61, 57, 60, 63, 63, 56, 56, 56, 61, 60, 61, 63, 66, 61, 64, 67, 69, 67, 68
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeOmega[Multinomial[n, n, n]]; Array[a, 100, 0] (* Amiram Eldar, Jun 11 2025 *)
  • PARI
    a(n) = bigomega((3*n)! / n!^3); \\ Amiram Eldar, Jun 11 2025

Formula

From Amiram Eldar, Jun 11 2025: (Start)
a(n) = A001222(A006480(n)).
a(n) = A022559(3*n) - 3*A022559(n). (End)

Extensions

Offset changed to 0 and a(0) prepended by Amiram Eldar, Jun 11 2025

A023990 Sum of exponents of primes in multinomial coefficient M(4n; 2n,n,n) - sum of exponents of primes in M(3n; n,n,n).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 3, 3, 4, 4, 1, 2, 4, 3, 3, 5, 4, 4, 3, 4, 7, 4, 4, 5, 7, 5, 4, 5, 5, 6, 6, 7, 7, 9, 7, 9, 11, 8, 9, 9, 9, 8, 6, 7, 7, 6, 6, 8, 9, 8, 8, 9, 10, 7, 8, 9, 10, 11, 7, 8, 11, 11, 10, 12, 13, 13, 12, 11, 14, 12, 11, 13, 14, 12, 12, 14, 14, 13, 14, 14, 15, 15, 13, 14, 14, 11, 10, 13, 12, 13, 13, 12, 15
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeOmega[Multinomial[2*n, n, n]] - PrimeOmega[Multinomial[n, n, n]]; Array[a, 100, 0] (* Amiram Eldar, Jun 11 2025 *)
  • PARI
    a(n) = bigomega((4*n)!/((2*n)!*n!^2)) - bigomega((3*n)!/(n!^3)); \\ Amiram Eldar, Jun 11 2025

Formula

From Amiram Eldar, Jun 11 2025: (Start)
a(n) = A023980(n) - A023978(n) = A001222(A000897(n)) - A001222(A006480(n)).
a(n) = A022559(4*n) + 2*A022559(n) - A022559(2*n) - A022559(3*n). (End)

Extensions

Name clarified, offset changed to 0 and a(0) prepended by Amiram Eldar, Jun 11 2025

A104684 Triangle read by rows: T(n,k) is the number of lattice paths from (0,0) to (n,n) using steps E=(1,0), N=(0,1) and D=(1,1) (i.e., bilateral Schroeder paths), having k D=(1,1) steps.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 20, 30, 12, 1, 70, 140, 90, 20, 1, 252, 630, 560, 210, 30, 1, 924, 2772, 3150, 1680, 420, 42, 1, 3432, 12012, 16632, 11550, 4200, 756, 56, 1, 12870, 51480, 84084, 72072, 34650, 9240, 1260, 72, 1, 48620, 218790, 411840, 420420, 252252
Offset: 0

Views

Author

Emeric Deutsch, Apr 24 2005

Keywords

Comments

Row sums are the central Delannoy numbers (A001850). T(n,0)=A000984(n) (the central binomial numbers). Alternating row sums = 1 See the Bataille link.
Row reversed version of A063007.
Another version of [0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] = 1; 0, 1; 0, 2, 1; 0, 6, 6, 1; 0, 20, 30, 12, 1; 0, 70, 140, 90, 20, 1; ..., where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 25 2005
Terms in row n are the coefficients of the Legendre polynomial P(n,2x+1) with decreasing powers of x.
Coefficient array of x^n*Legendre_P(n,2/x+1). - Paul Barry, Apr 19 2009

Examples

			T(2,1)=6 because we have NED, NDE, EDN, END, DEN and DNE.
The triangle T(n, k) begins:
n\k    0     1     2     3     4    5    6  7 8 ...
0:     1
1:     2     1
2:     6     6     1
3:    20    30    12     1
4:    70   140    90    20    1
5:   252   630   560   210   30     1
6:   924  2772  3150  1680  420    42    1
7:  3432 12012 16632 11550 4200   756   56  1
8: 12870 51480 84084 72072 34650 9240 1260 72 1
...
row n=9: 48620 218790 411840 420420 252252 90090 18480 1980 90 1,
row n=10: 184756 923780 1969110 2333760 1681680 756756 210210 34320 2970 110 1.
... reformatted by _Wolfdieter Lang_, Sep 11 2016
		

Crossrefs

Programs

  • Haskell
    a104684 n k = a104684_tabl !! n !! k
    a104684_row n = a104684_tabl !! n
    a104684_tabl = map (map abs) $
                   zipWith (zipWith (*)) a130595_tabl a092392_tabl
    -- Reinhard Zumkeller, Dec 20 2013
  • Maple
    T:=(n,k)->binomial(n,k)*binomial(2*n-k,n): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := Binomial[n, k] Binomial[2n-k, n];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)

Formula

T(n, k) = binomial(n, k)*binomial(2n-k, n) (0 <= k <= n).
G.f.: G(t, z) = 1/sqrt((1-tz)^2 - 4z).
T(n,k) = binomial(2(n-k),n-k)*binomial(2n-k,k). - Paul Barry, Mar 14 2006
T(2n,n) = C(2n,n)*C(3n,n) = C(n,n)*C(2n,n)*C(3n,n) = A006480(n). - Paul Barry, Mar 14 2006
G.f.: 1/(1-xy-2x/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x... (continued fraction). - Paul Barry, Jan 06 2009
T(n,k) = Sum_{j=0..n} C(n,j)^2*C(j,k). - Paul Barry, May 28 2009
T(n,k) = [x^k]F(-n,-n;1;1+x). - Paul Barry, Oct 05 2010
T(n,k) = (n-k+1)*A060693(n,k). - Peter Luschny, May 17 2011
T(n,k) = A054142(n,k)*A000984(n-k). - Philippe Deléham, Nov 19 2011.
T(n,k) = abs(A130595(n,k)*A092392(n,k)). - Reinhard Zumkeller, Dec 20 2013

A181545 G.f.: A(x) = Sum_{n>=0} (3n)!/(n!)^3 * x^(3n)/(1-x-x^2)^(3n+1).

Original entry on oeis.org

1, 1, 2, 9, 29, 92, 343, 1281, 4720, 17899, 68933, 266364, 1037423, 4072439, 16065148, 63658521, 253356763, 1012049086, 4055596343, 16299779331, 65683233938, 265310551667, 1073968967929, 4355988107100, 17699727361051
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2010

Keywords

Comments

Limit_{n->oo} a(n+1)/a(n) = (Fibonacci(3)*sqrt(5) + Lucas(3))/2 = sqrt(5) + 2.
Diagonal of the rational function 1 / ((1 - x)*(1 - y)*(1 - z) - (x*y*z)^2). - Ilya Gutkovskiy, Apr 23 2025

Examples

			G.f. A(x) = 1 + x + 2*x^2 + 9*x^3 + 29*x^4 + 92*x^5 + 343*x^6 + ...
which equals the series:
A(x) = 1/(1-x-x^2) + 3!/1!^3*x^3/(1-x-x^2)^4 + 6!/2!^3*x^6/(1-x-x^2)^7 + 9!/3!^3*x^9/(1-x-x^2)^10 + 12!/4!^3*x^12/(1-x-x^2)^13 + ...
The g.f. also equals the series:
A(x) = 1 +
x*(1 + x) +
x^2*(1 + 2^3*x + x^2) +
x^3*(1 + 3^3*x + 3^3*x^2 + x^3) +
x^4*(1 + 4^3*x + 6^3*x^2 + 4^3*x^3 + x^4) +
x^5*(1 + 5^3*x + 10^3*x^2 + 10^3*x^3 + 5^3*x^4 + x^5) + ...
The terms begin:
a(0) = a(1) = 1^3;
a(2) = 1^3 + 1^3 = 2;
a(3) = 1^3 + 2^3 = 9;
a(4) = 1^3 + 3^3 + 1^3 = 29;
a(5) = 1^3 + 4^3 + 3^3 = 92;
a(6) = 1^3 + 5^3 + 6^3 + 1^3 = 343;
a(7) = 1^3 + 6^3 + 10^3 + 4^3 = 1281; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]^3,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Jul 31 2014 *)
  • PARI
    {a(n)=sum(k=0,n\2,binomial(n-k,k)^3)}
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^3*x^k + x*O(x^n))), n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^(3*m)/(1-x-x^2+x*O(x^n))^(3*m+1)*(3*m)!/(m!)^3),n)}

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)^3.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^3 * x^k.
G.f.: A(x) = G( x^3/(1-x-x^2)^3 )/(1-x-x^2) where G(x) satisfies:
* G(x^3) = G( x*(1+3*x+9*x^2)/(1+6*x)^3 )/(1+6*x)
and G(x) is the g.f. of A006480.
Recurrence: (n-3)*n^2*a(n) = (n-3)*(3*n^2 - 3*n + 1)*a(n-1) - (n-1)*a(n-2) + 2*(n-2)*(11*n^2 - 44*n + 34)*a(n-3) + (n-3)*a(n-4) + (n-1)*(3*n^2 - 21*n + 37)*a(n-5) + (n-4)^2*(n-1)*a(n-6). - Vaclav Kotesovec, Jul 31 2014
a(n) ~ sqrt((9+4*sqrt(5))/12) * (2+sqrt(5))^n / (Pi*n). - Vaclav Kotesovec, Jul 31 2014
Equivalently, a(n) ~ phi^(3*n + 3) / (2*sqrt(3)*Pi*n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
Previous Showing 21-30 of 106 results. Next