cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 88 results. Next

A332638 Number of integer partitions of n whose negated run-lengths are unimodal.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 52, 70, 91, 118, 151, 195, 246, 310, 388, 484, 600, 743, 909, 1113, 1359, 1650, 1996, 2409, 2895, 3471, 4156, 4947, 5885, 6985, 8260, 9751, 11503, 13511, 15857, 18559, 21705, 25304, 29499, 34259, 39785, 46101, 53360, 61594
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(8) = 21 partitions:
  (8)     (44)     (2222)
  (53)    (332)    (22211)
  (62)    (422)    (32111)
  (71)    (431)    (221111)
  (521)   (3311)   (311111)
  (611)   (4211)   (2111111)
  (5111)  (41111)  (11111111)
Missing from this list is only (3221).
		

Crossrefs

The non-negated version is A332280.
The complement is counted by A332639.
The Heinz numbers of partitions not in this class are A332642.
The case of 0-appended differences (instead of run-lengths) is A332728.
Unimodal compositions are A001523.
Partitions whose run lengths are not unimodal are A332281.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
Compositions whose negation is unimodal are A332578.
Compositions whose run-lengths are unimodal are A332726.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],unimodQ[-Length/@Split[#]]&]],{n,0,30}]

A072704 Triangle of number of weakly unimodal partitions/compositions of n into exactly k terms.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 8, 7, 5, 1, 1, 6, 12, 12, 9, 6, 1, 1, 7, 16, 20, 16, 11, 7, 1, 1, 8, 21, 30, 28, 20, 13, 8, 1, 1, 9, 27, 42, 45, 36, 24, 15, 9, 1, 1, 10, 33, 58, 68, 60, 44, 28, 17, 10, 1, 1, 11, 40, 77, 98, 95, 75, 52, 32, 19, 11, 1
Offset: 1

Views

Author

Henry Bottomley, Jul 04 2002

Keywords

Examples

			Rows start:
01:  [1]
02:  [1, 1]
03:  [1, 2, 1]
04:  [1, 3, 3, 1]
05:  [1, 4, 5, 4, 1]
06:  [1, 5, 8, 7, 5, 1]
07:  [1, 6, 12, 12, 9, 6, 1]
08:  [1, 7, 16, 20, 16, 11, 7, 1]
09:  [1, 8, 21, 30, 28, 20, 13, 8, 1]
10:  [1, 9, 27, 42, 45, 36, 24, 15, 9, 1]
...
T(6,3)=8 since 6 can be written as 1+1+4, 1+2+3, 1+3+2, 1+4+1, 2+2+2, 2+3+1, 3+2+1, or 4+1+1 but not 2+1+3 or 3+1+2.
		

Crossrefs

Cf. A059623, A072705. Row sums are A001523. First column is A057427, second is A000027 offset, third appears to be A000212 offset, right hand columns include A000012, A000027, A005408 and A008574.
The case of partitions is A072233.
Dominates A332670 (the version for negated compositions).
The strict case is A072705.
The case of constant compositions is A113704.
Unimodal sequences covering an initial interval are A007052.
Partitions whose run-lengths are unimodal are A332280.

Programs

  • Maple
    b:= proc(n, i) option remember; local q; `if`(i>n, 0,
          `if`(irem(n, i, 'q')=0, x^q, 0) +expand(
          add(b(n-i*j, i+1)*(j+1)*x^j, j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i ] == 0, x^Quotient[n, i], 0] + Expand[ Sum[b[n-i*j, i+1]*(j+1)*x^j, {j, 0, n/i}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],unimodQ]],{n,0,10},{k,0,n}] (* Gus Wiseman, Mar 06 2020 *)
  • PARI
    \\ starting for n=0, with initial column 1, 0, 0, ...:
    N=25;  x='x+O('x^N);
    T=Vec(1 + sum(n=1, N, t*x^n / ( prod(k=1,n-1, (1 - t*x^k)^2 ) * (1 - t*x^n) ) ) )
    for(r=1,#T, print(Vecrev(T[r])) ); \\ Joerg Arndt, Oct 01 2017

Formula

G.f. with initial column 1, 0, 0, ...: 1 + Sum_{n>=1} (t*x^n / ( ( Product_{k=1..n-1} (1 - t*x^k)^2 ) * (1 - t*x^n) ) ). - Joerg Arndt, Oct 01 2017

A047781 a(n) = Sum_{k=0..n-1} binomial(n-1,k)*binomial(n+k,k). Also a(n) = T(n,n), array T as in A049600.

Original entry on oeis.org

0, 1, 4, 19, 96, 501, 2668, 14407, 78592, 432073, 2390004, 13286043, 74160672, 415382397, 2333445468, 13141557519, 74174404608, 419472490257, 2376287945572, 13482186743203, 76598310928096, 435730007006341, 2481447593848524, 14146164790774359
Offset: 0

Views

Author

Keywords

Comments

Also main diagonal of array: m(i,1)=1, m(1,j)=j, m(i,j)=m(i,j-1)+m(i-1,j-1)+m(i-1,j): 1 2 3 4 ... / 1 4 9 16 ... / 1 6 19 44 ... / 1 8 33 96 ... /. - Benoit Cloitre, Aug 05 2002
This array is now listed as A142978, where some conjectural congruences for the present sequence are given. - Peter Bala, Nov 13 2008
Convolution of central Delannoy numbers A001850 and little Schroeder numbers A001003. Hankel transform is 2^C(n+1,2)*A007052(n). - Paul Barry, Oct 07 2009
Define a finite triangle T(r,c) with T(r,0) = binomial(n,r) for 0 <= r <= n and the other terms recursively with T(r,c) = T(r-1,c-1) + 2*T(r,c-1). The sum of the last terms in the rows is Sum_{r=0..n} T(r,r) = a(n+1). Example: For n=4 the triangle has the rows 1; 4 9; 6 16 41; 4 14 44 129; 1 6 26 96 321 having sum of last terms 1 + 9 + 41 + 129 + 321 = 501 = a(5). - J. M. Bergot, Feb 15 2013
a(n) = A049600(2*n,n), when A049600 is seen as a triangle read by rows. - Reinhard Zumkeller, Apr 15 2014
a(n-1) for n > 1 is the number of assembly trees with the connected gluing rule for cycle graphs with n vertices. - Nick Mayers, Aug 16 2018

Crossrefs

Cf. A002003. Column 1 of A296129.

Programs

  • Haskell
    a047781 n = a049600 (2 * n) n  -- Reinhard Zumkeller, Apr 15 2014
    
  • Magma
    [n eq 0 select 0 else &+[Binomial(n-1, k)*Binomial(n+k, k): k in [0..n-1]]: n in [0..22]];  // Bruno Berselli, May 19 2011
    
  • Maple
    a := proc(n) local k; add(binomial(n-1,k)*binomial(n+k,k),k=0..n-1); end;
  • Mathematica
    Table[SeriesCoefficient[x*((1+x)-Sqrt[1-6*x+x^2])/(4*x*Sqrt[1-6*x+x^2]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    a[n_] := Hypergeometric2F1[1-n, n+1, 1, -1]; a[0] = 0; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Feb 26 2013 *)
    a[n_] := Sum[ Binomial[n - 1, k] Binomial[n + k, k], {k, 0, n - 1}]; Array[a, 25] (* Robert G. Wilson v, Aug 08 2018 *)
  • Maxima
    makelist(if n=0 then 0 else sum(binomial(n-1, k)*binomial(n+k, k), k, 0, n-1), n, 0, 22); /* Bruno Berselli, May 19 2011 */
    
  • PARI
    A047781(n)=polcoeff((1+x)/sqrt(1+(O(x^n)-6)*x+x^2),n)\4  \\ M. F. Hasler, Oct 09 2012
    
  • Python
    from sympy import binomial
    def a(n):
        return sum(binomial(n - 1, k) * binomial(n + k, k) for k in range(n))
    print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 18 2017
    
  • Python
    from math import comb
    def A047781(n): return sum(comb(n,k)**2*k<Chai Wah Wu, Mar 22 2023

Formula

D-finite with recurrence n*(2*n-3)*a(n) - (12*n^2-24*n+8)*a(n-1) + (2*n-1)*(n-2)*a(n-2) = 0. - Vladeta Jovovic, Aug 29 2004
a(n+1) = Sum_{k=0..n} binomial(n, k)*binomial(n+1, k+1)*2^k. - Paul Barry, Sep 20 2004
a(n) = Sum_{k=0..n} T(n, k), array T as in A008288.
If shifted one place left, the third binomial transform of A098660. - Paul Barry, Sep 20 2004
G.f.: ((1+x)/sqrt(1-6x+x^2)-1)/4. - Paul Barry, Sep 20 2004, simplified by M. F. Hasler, Oct 09 2012
E.g.f. for sequence shifted left: Sum_{n>=0} a(n+1)*x^n/n! = exp(3*x)*(BesselI(0, 2*sqrt(2)*x)+BesselI(1, 2*sqrt(2)*x)/sqrt(2)). - Paul Barry, Sep 20 2004
a(n) = Sum_{k=0..n-1} C(n,k)*C(n-1,k)*2^(n-k-1); a(n+1) = 2^n*Hypergeometric2F1(-n,-n-1;1;1/2). - Paul Barry, Feb 08 2011
a(n) ~ 2^(1/4)*(3+2*sqrt(2))^n/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
Recurrence (an alternative): n*a(n) = (6-n)*a(n-6) + 2*(5*n-27)*a(n-5) + (84-15*n)*a(n-4) + 52*(3-n)*a(n-3) + 3*(2-5*n)*a(n-2) + 2*(5*n-3)*a(n-1), n >= 7. - Fung Lam, Feb 05 2014
a(n) = A241023(n) / 4. - Reinhard Zumkeller, Apr 15 2014
a(n) = Hyper2F1([-n, n], [1], -1)/2 for n > 0. - Peter Luschny, Aug 02 2014
n^2*a(n) = Sum_{k=0..n-1} (2*k^2+2*k+1)*binomial(n-1,k)*binomial(n+k,k). By the Zeilberger algorithm, both sides of the equality satisfy the same recurrence. - Zhi-Wei Sun, Aug 30 2014
a(n) = [x^n] (1/2) * ((1+x)/(1-x))^n for n > 0. - Seiichi Manyama, Jun 07 2018

A214992 Power ceiling-floor sequence of (golden ratio)^4.

Original entry on oeis.org

7, 47, 323, 2213, 15169, 103969, 712615, 4884335, 33477731, 229459781, 1572740737, 10779725377, 73885336903, 506417632943, 3471038093699, 23790849022949, 163064905066945, 1117663486445665, 7660579500052711
Offset: 0

Views

Author

Clark Kimberling, Nov 08 2012, Jan 24 2013

Keywords

Comments

Let f = floor and c = ceiling. For x > 1, define four sequences as functions of x, as follows:
p1(0) = f(x), p1(n) = f(x*p1(n-1));
p2(0) = f(x), p2(n) = c(x*p2(n-1)) if n is odd and p2(n) = f(x*p1(n-1)) if n is even;
p3(0) = c(x), p3(n) = f(x*p3(n-1)) if n is odd and p3(n) = c(x*p3(n-1)) if n is even;
p4(0) = c(x), p4(n) = c(x*p4(n-1)).
The present sequence is given by a(n) = p3(n).
Following the terminology at A214986, call the four sequences power floor, power floor-ceiling, power ceiling-floor, and power ceiling sequences. In the table below, a sequence is identified with an A-numbered sequence if they appear to agree except possibly for initial terms. Notation: S(t)=sqrt(t), r = (1+S(5))/2 = golden ratio, and Limit = limit of p3(n)/p2(n).
x ......p1..... p2..... p3..... p4.......Limit
r^2.....A001519 A001654 A061646 A001906..-1+S(5)
r^3.....A024551 A001076 A015448 A049652..-1+S(5)
r^4.....A049685 A157335 A214992 A004187..-19+9*S(5)
r^5.....A214993 A049666 A015457 A214994...(-9+5*S(5))/2
r^6.....A007805 A156085 A214995 A049660..-151+68*S(5)
2+S(2)..A007052 A214996 A214997 A007070..(1+S(2))/2
1+S(3)..A057960 A002605 A028859 A077846..(1+S(3))/2
2+S(3)..A001835 A109437 A214998 A001353..-4+3*S(3)
S(5)....A214999 A215091 A218982 A218983..1.26879683...
2+S(5)..A024551 A001076 A015448 A049652..-1+S(5)
2+S(6)..A218984 A090017 A123347 A218985..S(3/2)
2+S(7)..A218986 A015530 A126473 A218987..(1+S(7))/3
2+S(8)..A218988 A057087 A086347 A218989..(1+S(2))/2
3+S(8)..A001653 A084158 A218990 A001109..-13+10*S(2)
3+S(10).A218991 A005668 A015451 A218992..-2+S(10)
...
Properties of p1, p2, p3, p4:
(1) If x > 2, the terms of p2 and p3 interlace: p2(0) < p3(0) < p2(1) < p3(1) < p2(2) < p3(2)... Also, p1(n) <= p2(n) <= p3(n) <= p4(n) <= p1(n+1) for all x>0 and n>=0.
(2) If x > 2, the limits L(x) = limit(p/x^n) exist for the four functions p(x), and L1(x) <= L2(x) <= L3(x) <= L4 (x). See the Mathematica programs for plots of the four functions; one of them also occurs in the Odlyzko and Wilf article, along with a discussion of the special case x = 3/2.
(3) Suppose that x = u + sqrt(v) where v is a nonsquare positive integer. If u = f(x) or u = c(x), then p1, p2, p3, p4 are linear recurrence sequences. Is this true for sequences p1, p2, p3, p4 obtained from x = (u + sqrt(v))^q for every positive integer q?
(4) Suppose that x is a Pisot-Vijayaraghavan number. Must p1, p2, p3, p4 then be linearly recurrent? If x is also a quadratic irrational b + c*sqrt(d), must the four limits L(x) be in the field Q(sqrt(d))?
(5) The Odlyzko and Wilf article (page 239) raises three interesting questions about the power ceiling function; it appears that they remain open.

Examples

			a(0) = ceiling(r) = 7, where r = ((1+sqrt(5))/2)^4 = 6.8...; a(1) = floor(7*r) = 47; a(2) = ceiling(47) = 323.
		

Crossrefs

Programs

  • Mathematica
    (* Program 1.  A214992 and related sequences *)
    x = GoldenRatio^4; z = 30; (* z = # terms in sequences *)
    z1 = 100; (* z1 = # digits in approximations *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    Table[p1[n], {n, 0, z}]  (* A049685 *)
    Table[p2[n], {n, 0, z}]  (* A157335 *)
    Table[p3[n], {n, 0, z}]  (* A214992 *)
    Table[p4[n], {n, 0, z}]  (* A004187 *)
    Table[p4[n] - p1[n], {n, 0, z}]  (* A004187 *)
    Table[p3[n] - p2[n], {n, 0, z}]  (* A098305 *)
    (* Program 2.  Plot of power floor and power ceiling functions, p1(x) and p4(x) *)
    f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x];
    p1[x_, 0] := f[x]; p1[x_, n_] := f[x*p1[x, n - 1]];
    p4[x_, 0] := c[x]; p4[x_, n_] := c[x*p4[x, n - 1]];
    Plot[Evaluate[{p1[x, 10]/x^10, p4[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]
    (* Program 3. Plot of power floor-ceiling and power ceiling-floor functions, p2(x) and p3(x) *)
    f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x];
    p2[x_, 0] := f[x]; p3[x_, 0] := c[x];
    p2[x_, n_] := If[Mod[n, 2] == 1, c[x*p2[x, n - 1]], f[x*p2[x, n - 1]]]
    p3[x_, n_] := If[Mod[n, 2] == 1, f[x*p3[x, n - 1]], c[x*p3[x, n - 1]]]
    Plot[Evaluate[{p2[x, 10]/x^10, p3[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]

Formula

a(n) = floor(r*a(n-1)) if n is odd and a(n) = ceiling(r*a(n-1)) if n is even, where a(0) = ceiling(r), r = (golden ratio)^4 = (7 + sqrt(5))/2.
a(n) = 6*a(n-1) + 6*a(n-2) - a(n-3).
G.f.: (7 + 5*x - x^2)/((1 + x)*(1 - 7*x + x^2)).
a(n) = (10*(-2)^n+(10+3*sqrt(5))*(7-3*sqrt(5))^(n+2)+(10-3*sqrt(5))*(7+3*sqrt(5))^(n+2))/(90*2^n). - Bruno Berselli, Nov 14 2012
a(n) = 7*A157335(n) + 5*A157335(n-1) - A157335(n-2). - R. J. Mathar, Feb 05 2020
E.g.f.: exp(-x)*(5 + 2*exp(9*x/2)*(155*cosh(3*sqrt(5)*x/2) + 69*sqrt(5)*sinh(3*sqrt(5)*x/2)))/45. - Stefano Spezia, Oct 28 2024

A332577 Number of integer partitions of n covering an initial interval of positive integers with unimodal run-lengths.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 19, 23, 25, 30, 36, 40, 45, 54, 59, 68, 79, 86, 96, 112, 121, 135, 155, 168, 188, 214, 230, 253, 284, 308, 337, 380, 407, 445, 497, 533, 580, 645, 689, 748, 828, 885, 956, 1053, 1124, 1212, 1330, 1415, 1519, 1665, 1771
Offset: 0

Views

Author

Gus Wiseman, Feb 24 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(1) = 1 through a(9) = 8 partitions:
  1  11  21   211   221    321     2221     3221      3321
         111  1111  2111   2211    3211     22211     22221
                    11111  21111   22111    32111     32211
                           111111  211111   221111    222111
                                   1111111  2111111   321111
                                            11111111  2211111
                                                      21111111
                                                      111111111
		

Crossrefs

Not requiring unimodality gives A000009.
A version for compositions is A227038.
Not requiring the partition to cover an initial interval gives A332280.
The complement is counted by A332579.
Unimodal compositions are A001523.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&unimodQ[Length/@Split[#]]&]],{n,0,30}]

A332726 Number of compositions of n whose run-lengths are unimodal.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 61, 120, 228, 438, 836, 1580, 2976, 5596, 10440, 19444, 36099, 66784, 123215, 226846, 416502, 763255, 1395952, 2548444, 4644578, 8452200, 15358445, 27871024, 50514295, 91446810, 165365589, 298730375, 539127705, 972099072, 1751284617, 3152475368
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The only composition of 6 whose run-lengths are not unimodal is (1,1,2,1,1).
		

Crossrefs

Looking at the composition itself (not run-lengths) gives A001523.
The case of partitions is A332280, with complement counted by A332281.
The complement is counted by A332727.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Non-unimodal compositions are A115981.
Compositions with normal run-lengths are A329766.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283, with complement A332284, with Heinz numbers A332287.
Compositions whose negated run-lengths are unimodal are A332578.
Compositions whose negated run-lengths are not unimodal are A332669.
Compositions whose run-lengths are weakly increasing are A332836.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,10}]
  • PARI
    step(M, m)={my(n=matsize(M)[1]); for(p=m+1, n, my(v=vector((p-1)\m, i, M[p-i*m,i]), s=vecsum(v)); M[p,]+=vector(#M,i,s-if(i<=#v, v[i]))); M}
    desc(M, m)={my(n=matsize(M)[1]); while(m>1, m--; M=step(M,m)); vector(n, i, vecsum(M[i,]))/(#M-1)}
    seq(n)={my(M=matrix(n+1, n+1, i, j, i==1), S=M[,1]~); for(m=1, n, my(D=M); M=step(M, m); D=(M-D)[m+1..n+1,1..n-m+2]; S+=concat(vector(m), desc(D,m))); S} \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) + A332727(n) = 2^(n - 1).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A332287 Heinz numbers of integer partitions whose first differences (assuming the last part is zero) are not unimodal.

Original entry on oeis.org

36, 50, 70, 72, 98, 100, 108, 140, 144, 154, 180, 182, 196, 200, 216, 225, 242, 250, 252, 280, 286, 288, 294, 300, 308, 324, 338, 350, 360, 363, 364, 374, 392, 396, 400, 418, 429, 432, 441, 442, 450, 462, 468, 484, 490, 494, 500, 504, 507, 540, 550, 560, 561
Offset: 1

Views

Author

Gus Wiseman, Feb 21 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), which gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
   36: {1,1,2,2}
   50: {1,3,3}
   70: {1,3,4}
   72: {1,1,1,2,2}
   98: {1,4,4}
  100: {1,1,3,3}
  108: {1,1,2,2,2}
  140: {1,1,3,4}
  144: {1,1,1,1,2,2}
  154: {1,4,5}
  180: {1,1,2,2,3}
  182: {1,4,6}
  196: {1,1,4,4}
  200: {1,1,1,3,3}
  216: {1,1,1,2,2,2}
  225: {2,2,3,3}
  242: {1,5,5}
  250: {1,3,3,3}
  252: {1,1,2,2,4}
  280: {1,1,1,3,4}
For example, the prime indices of 70 with 0 appended are (4,3,1,0), with differences (-1,-2,-1), which is not unimodal, so 70 belongs to the sequence.
		

Crossrefs

The enumeration of these partitions by sum is A332284.
Not assuming the last part is zero gives A332725.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Partitions with non-unimodal run-lengths are A332281.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Select[Range[1000],!unimodQ[Differences[Append[Reverse[primeMS[#]],0]]]&]

A332288 Number of unimodal permutations of the multiset of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 4, 2, 2, 1, 6, 1, 2, 3, 1, 2, 4, 1, 3, 2, 4, 1, 4, 1, 2, 2, 3, 2, 4, 1, 5, 1, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also permutations of the multiset of prime indices of n avoiding the patterns (2,1,2), (2,1,3), and (3,1,2).

Examples

			The a(n) permutations for n = 2, 6, 12, 24, 48, 60, 120, 180:
  (1)  (12)  (112)  (1112)  (11112)  (1123)  (11123)  (11223)
       (21)  (121)  (1121)  (11121)  (1132)  (11132)  (11232)
             (211)  (1211)  (11211)  (1231)  (11231)  (11322)
                    (2111)  (12111)  (1321)  (11321)  (12231)
                            (21111)  (2311)  (12311)  (12321)
                                     (3211)  (13211)  (13221)
                                             (23111)  (22311)
                                             (32111)  (23211)
                                                      (32211)
		

Crossrefs

Dominated by A008480.
A more interesting version is A332294.
The complement is counted by A332671.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Numbers with non-unimodal unsorted prime signature are A332282.
Partitions with unimodal 0-appended first differences are A332283.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[primeMS[n]],unimodQ]],{n,30}]

A332870 Number of compositions of n that are neither unimodal nor is their negation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 9, 32, 92, 243, 587, 1361, 3027, 6564, 13928, 29127, 60180, 123300, 250945, 508326, 1025977, 2065437, 4150056, 8327344, 16692844, 33438984, 66951671, 134004892, 268148573, 536486146, 1073227893, 2146800237, 4294061970, 8588740071, 17178298617
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(6) = 2 and a(7) = 9 compositions:
  (1212)  (1213)
  (2121)  (1312)
          (2131)
          (3121)
          (11212)
          (12112)
          (12121)
          (21121)
          (21211)
		

Crossrefs

The case of run-lengths of partitions is A332640.
The version for unsorted prime signature is A332643.
Unimodal compositions are A001523.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Compositions whose negation is unimodal are A332578.
Compositions whose negation is not unimodal are A332669.
Partitions with weakly increasing or decreasing run-lengths are A332745.
Compositions that are neither weakly increasing nor decreasing are A332834.
Compositions with weakly increasing or decreasing run-lengths are A332835.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[#]&&!unimodQ[-#]&]],{n,0,10}]

Formula

a(n) = 2^(n-1) - A001523(n) - A332578(n) + 2*A000041(n) - A000005(n) for n > 0. - Andrew Howroyd, Dec 30 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020

A332286 Number of strict integer partitions of n whose first differences (assuming the last part is zero) are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 3, 5, 5, 7, 9, 12, 15, 22, 23, 31, 40, 47, 58, 72, 81, 100, 122, 144, 171, 206, 236, 280, 333, 381, 445, 522, 593, 694, 802, 914, 1054, 1214, 1376, 1577, 1803, 2040, 2324, 2646, 2973, 3373, 3817, 4287, 4838, 5453, 6096, 6857
Offset: 0

Views

Author

Gus Wiseman, Feb 21 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also the number integer partitions of n that cover an initial interval of positive integers and whose negated run-lengths are not unimodal.

Examples

			The a(8) = 1 through a(18) = 7 partitions:
  (431)  .  (541)  (641)  (651)   (652)   (752)   (762)   (862)
                          (5421)  (751)   (761)   (861)   (871)
                                  (5431)  (851)   (6531)  (961)
                                          (6431)  (7431)  (6532)
                                          (6521)  (7521)  (6541)
                                                          (7621)
                                                          (8431)
For example, (4,3,1,0) has first differences (-1,-2,-1), which is not unimodal, so (4,3,1) is counted under a(8).
		

Crossrefs

Strict partitions are A000009.
Partitions covering an initial interval are (also) A000009.
The non-strict version is A332284.
The complement is counted by A332285.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Partitions with non-unimodal run-lengths are A332281.
Normal partitions whose run-lengths are not unimodal are A332579.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,!unimodQ[Differences[Append[#,0]]]]&]],{n,0,30}]
Previous Showing 21-30 of 88 results. Next