cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 140 results. Next

A126279 Triangle read by rows: T(k,n) is number of numbers <= 2^n that are products of k primes.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 6, 6, 2, 1, 11, 10, 7, 2, 1, 18, 22, 13, 7, 2, 1, 31, 42, 30, 14, 7, 2, 1, 54, 82, 60, 34, 15, 7, 2, 1, 97, 157, 125, 71, 36, 15, 7, 2, 1, 172, 304, 256, 152, 77, 37, 15, 7, 2, 1, 309, 589, 513, 325, 168, 81, 37, 15, 7, 2, 1, 564, 1124, 1049, 669, 367, 177, 83, 37
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
  1
  2 1
  4 2 1
  6 6 2 1
  11 10 7 2 1
  18 22 13 7 2 1
  31 42 30 14 7 2 1
  54 82 60 34 15 7 2 1
  97 157 125 71 36 15 7 2 1
  172 304 256 152 77 37 15 7 2 1
		

References

  • Adolf Hildebrand, On the number of prime factors of an integer. Ramanujan revisited (Urbana-Champaign, Ill., 1987), 167 - 185, Academic Press, Boston, MA, 1988.
  • Edmund Georg Hermann Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 205 - 211.

Crossrefs

First column: A007053, second column: A125527, third column: A127396, 4th column: A334069. The last row reversed: A052130; the n-th row's sum: A000225 = 2^n -1.
Cf. A126280: same array but for powers of ten.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[ n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[ Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[m, 2^n], {n, 16}, {m, n}] // Flatten

A182908 Rank of 2^n when all prime powers (A246655) p^n, for n>=1, are jointly ranked.

Original entry on oeis.org

1, 3, 6, 10, 18, 27, 44, 70, 117, 198, 340, 604, 1078, 1961, 3590, 6635, 12370, 23150, 43579, 82267, 155921, 296347, 564688, 1078555, 2064589, 3958999, 7605134, 14632960, 28195586, 54403835, 105102701, 203287169, 393625231, 762951922, 1480223716, 2874422303
Offset: 1

Views

Author

Clark Kimberling, Dec 13 2010

Keywords

Examples

			a(3)=6 because 2^3 has rank 6 in the sequence (2,3,4,5,7,8,9,...).
		

Crossrefs

Row 1 of A182869. Complement of A182909.

Programs

  • Mathematica
    T[i_,j_]:=Sum[Floor[j*Log[Prime[i]]/Log[Prime[h]]],{h,1,PrimePi[Prime[i]^j]}]; Flatten[Table[T[i,j],{i,1,1},{j,1,22}]]
    f[n_] := Sum[ PrimePi[ Floor[2^(n/k)]], {k, n + 1}]; Array[f, 34] (* Robert G. Wilson v, Jul 08 2011 *)
  • Python
    from sympy import primepi, integer_nthroot
    def A182908(n):
        x = 1<Chai Wah Wu, Nov 05 2024

Formula

a(n) = A182908(n) = A024622(n) - 1 for n>=1.
a(n) = Sum_{i=1..n} pi(floor(2^(n/i))), where pi(n) = A000720(n). - Ridouane Oudra, Oct 26 2020
a(n) = A025528(2^n). - Pontus von Brömssen, Sep 27 2024

Extensions

Minor edits by Ray Chandler, Aug 20 2021

A056606 Squarefree kernel of lcm(binomial(n,0), ..., binomial(n,n)).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 30, 105, 70, 42, 210, 2310, 2310, 4290, 6006, 15015, 30030, 170170, 510510, 1939938, 1385670, 881790, 9699690, 223092870, 44618574, 17160990, 74364290, 31870410, 223092870, 6469693230, 6469693230, 100280245065
Offset: 0

Views

Author

Labos Elemer, Aug 07 2000

Keywords

Comments

Also squarefree kernel of A001142; row products in table A256113. - Reinhard Zumkeller, Mar 21 2015
a(2372) has 1001 decimal digits. - Michael De Vlieger, Jul 14 2017
Also the squarefree kernel of the cumulative product of n^n/n!. - Peter Luschny, Dec 21 2019
Conjecture: the few odd values belong to A070826. - Bill McEachen, Jun 24 2023
And their indices appear to be A007053. - Michel Marcus, Jul 01 2023

Examples

			a(7) = 105 because lcm(1, 7, 21, 35) = 105 is already squarefree.
a(0) = 1 because n^n/n! = 1 for the integer n = 0. - _Peter Luschny_, Dec 21 2019
		

Crossrefs

Programs

  • Haskell
    a056606 = a007947 . a001142  -- Reinhard Zumkeller, Mar 21 2015
    
  • Maple
    h := n -> mul(k^k/factorial(k), k=0..n):
    rad := n -> mul(k, k = numtheory[factorset](n)):
    seq(rad(h(n)), n=0..31); # Peter Luschny, Dec 21 2019
  • Mathematica
    Table[Apply[Times, FactorInteger[Product[k^(2 k - 1 - n), {k, n}]][[All, 1]]], {n, 0, 31}] (* or *)
    Table[Apply[Times, FactorInteger[Apply[LCM, Range@ n]/n][[All, 1]]], {n, 1, 32}] (* Michael De Vlieger, Jul 14 2017 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    a(n) = rad(lcm(vector(n+1, k, binomial(n,k-1)))); \\ Michel Marcus, Jun 24 2023

Formula

a(n) = A007947(A002944(n+1)). - Michel Marcus, Dec 21 2019
a(n) = radical(hyperfactorial(n)/superfactorial(n)) = A007947(A002109(n)/ A000178(n)) for n >= 0. - Peter Luschny, Dec 21 2019

Extensions

Extended with a(0) = 1 by Peter Luschny, Dec 21 2019

A024622 Position of 2^n among the powers of primes (A000961).

Original entry on oeis.org

1, 2, 4, 7, 11, 19, 28, 45, 71, 118, 199, 341, 605, 1079, 1962, 3591, 6636, 12371, 23151, 43580, 82268, 155922, 296348, 564689, 1078556, 2064590, 3959000, 7605135, 14632961, 28195587, 54403836, 105102702, 203287170, 393625232, 762951923, 1480223717, 2874422304
Offset: 0

Views

Author

Keywords

Comments

Number of prime powers <= 2^n. - Jon E. Schoenfield, Nov 06 2016
A000961(a(n)) = A000079(n); also position of record values in A192015: A001787(n) = A192015(a(n)). - Reinhard Zumkeller, Jun 26 2011

Crossrefs

Programs

  • Mathematica
    {1}~Join~Flatten[1 + Position[Select[Range[10^6], PrimePowerQ], k_ /; IntegerQ@ Log2@ k ]] (* Michael De Vlieger, Nov 14 2016 *)
  • PARI
    lista(nn) = {v = vector(2^nn, i, i); vpp = select(x->ispp(x), v); print1(1, ", "); for (i=1, #vpp, if ((vpp[i] % 2) == 0, print1(i, ", ")););} \\ Michel Marcus, Nov 17 2014
    
  • PARI
    a(n)=sum(k=1,n,primepi(sqrtnint(2^n,k)))+1 \\ Charles R Greathouse IV, Nov 21 2014
    
  • PARI
    a(n)=my(s=0);for(i=1, 2^n, isprimepower(i) && s++);s+1 \\ Dana Jacobsen, Mar 23 2021
    
  • Perl
    use ntheory ":all"; for my $n (0..20) { my $s=1; is_prime_power($) && $s++ for 1..2**$n; print "$n $s\n" } # _Dana Jacobsen, Mar 23 2021
    
  • Perl
    use ntheory ":all"; for my $n (0..64) { my $s = ($n < 1) ? 1 : vecsum(map{prime_count(rootint(powint(2,$n)-1,$))}1..$n)+2; print "$n $s\n"; } # _Dana Jacobsen, Mar 23 2021
    
  • Perl
    # with b-file for pi(2^n)
    perl -Mntheory=:all -nE 'my($n,$pc)=split; say "$n ", addint($pc,vecsum( map{prime_count(rootint(powint(2,$n),$))} 2..$n )+1);'  b007053.txt  # _Dana Jacobsen, Mar 23 2021
    
  • Python
    from sympy import primepi, integer_nthroot
    def A024622(n):
        x = 1<Chai Wah Wu, Nov 05 2024
  • SageMath
    def a(n): return sum(prime_pi(ZZ(2^n).nth_root(k+1,truncate_mode=1)[0]) for k in range(n))+1 # Dana Jacobsen, Mar 23 2021
    

Formula

From Ridouane Oudra, Oct 26 2020: (Start)
a(n) = 1 + Sum_{i=1..n} pi(floor(2^(n/i))), where pi(n) = A000720(n);
a(n) = 1 + A182908(n). (End)
a(n) = A025528(2^n)+1. - Pontus von Brömssen, Sep 28 2024

Extensions

a(28)-a(36) from Hiroaki Yamanouchi, Nov 21 2014
a(46)-a(53) corrected by Hiroaki Yamanouchi, Nov 15 2016

A102210 Number of primes that are bitwise covered by n.

Original entry on oeis.org

0, 1, 2, 0, 1, 1, 4, 0, 0, 1, 3, 0, 2, 1, 6, 0, 1, 1, 4, 0, 2, 1, 7, 0, 1, 1, 5, 0, 4, 1, 11, 0, 0, 1, 2, 0, 2, 1, 5, 0, 1, 1, 5, 0, 4, 1, 10, 0, 1, 1, 4, 0, 4, 1, 9, 0, 2, 1, 8, 0, 8, 1, 18, 0, 0, 1, 3, 0, 1, 1, 6, 0, 1, 1, 5, 0, 3, 1, 10, 0, 1, 1, 6, 0, 2, 1, 10, 0, 3, 1, 9, 0, 6, 1, 17, 0, 1, 1, 4, 0, 4, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 30 2004

Keywords

Comments

p is bitwise covered by n iff (p = (n AND p)) bitwise: A080099(n,p)=p.

Examples

			n=21->10101 -> a(21) = #{00101=5,10001=17} = 2.
		

Crossrefs

Programs

Formula

a(A102211(n)) = 0; a(A102212(n)) = 1; a(A102213(n)) > 1.
a(2^k-1) = A007053(k) for k > 1. - Amiram Eldar, Jan 12 2020

A060969 Number of cubes of primes <= 2^n.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 8, 9, 11, 12, 15, 18, 22, 26, 31, 37, 46, 54, 66, 79, 97, 117, 141, 172, 209, 257, 309, 376, 457, 564, 687, 842, 1028, 1266, 1549, 1900, 2327, 2861, 3512, 4323, 5320, 6542, 8072, 9936, 12251, 15104, 18640, 23000, 28428
Offset: 0

Views

Author

Labos Elemer, May 09 2001

Keywords

Examples

			For n = 10, the cubes of primes not exceeding 2^10 = 1024 are 8, 27, 125, 343, so a(10) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[ Floor[ 2^(g/3)//N ] ], {g, 0, 90} ]

Formula

a(3*n) = A007053(n). - Chai Wah Wu, Jan 23 2025
a(n) = A000720(A017979(n)). - Amiram Eldar, Mar 22 2025

Extensions

Missing a(0)=0 inserted by Sean A. Irvine, Jan 09 2023

A060970 Number of fourth powers of primes <= 2^n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 8, 8, 9, 11, 12, 14, 16, 18, 21, 24, 28, 31, 36, 42, 47, 54, 62, 72, 82, 97, 111, 128, 149, 172, 199, 229, 268, 309, 360, 418, 481, 564, 651, 760, 886, 1028, 1201, 1393, 1629, 1900, 2211, 2585, 3010, 3512, 4104, 4792
Offset: 0

Views

Author

Labos Elemer, May 09 2001

Keywords

Examples

			For n = 12, the 4th powers of prime not exceeding 2^12 = 4096 are 16, 81, 625, 2401, so a(12) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[ Floor[ 2^(g/4)//N ] ], {g, 0, 100} ]

Formula

a(4*n) = A007053(n). - Chai Wah Wu, Jan 23 2025
a(n) = A000720(A018048(n)). - Amiram Eldar, Mar 22 2025

Extensions

Missing a(0)=0 inserted by Sean A. Irvine, Jan 09 2023

A060971 Number of fifth powers of primes <= 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6, 7, 8, 9, 9, 11, 11, 13, 15, 16, 18, 21, 23, 25, 29, 31, 34, 39, 44, 47, 54, 62, 68, 76, 86, 97, 107, 122, 137, 154, 172, 193, 217, 244, 275, 309, 349, 393, 442, 499, 564, 635, 712, 807, 914, 1028, 1163, 1315, 1482
Offset: 0

Views

Author

Labos Elemer, May 09 2001

Keywords

Examples

			For n = 10: the 5th powers of primes not exceeding 2^10 = 1024 are 32 and 243, so a(10) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[ Floor[ 2^(g/5)//N ] ], {g, 0, 150} ]

Formula

a(5*n) = A007053(n). - Chai Wah Wu, Jan 23 2025
a(n) = A000720(A018117(n)). - Amiram Eldar, Mar 22 2025

Extensions

Missing a(0)=0 inserted by Sean A. Irvine, Jan 09 2023

A126084 a(n) = XOR of first n primes.

Original entry on oeis.org

0, 2, 1, 4, 3, 8, 5, 20, 7, 16, 13, 18, 55, 30, 53, 26, 47, 20, 41, 106, 45, 100, 43, 120, 33, 64, 37, 66, 41, 68, 53, 74, 201, 64, 203, 94, 201, 84, 247, 80, 253, 78, 251, 68, 133, 64, 135, 84, 139, 104, 141, 100, 139, 122, 129, 384, 135, 394, 133, 400, 137, 402, 183, 388, 179
Offset: 0

Views

Author

Esko Ranta, Mar 02 2007

Keywords

Comments

The values at odd positive indices are even and the values at even positive indices are odd.
Does this sequence contain any zeros for n > 0? Probabilistically, one would expect so; but none in first 10000 terms. - Franklin T. Adams-Watters, Jul 17 2011
None below 1.5 * 10^11: any prime p such that a(pi(p)) = 0 is 43 bits or longer. Heuristic chances that a prime below 2^100 yields 0 are about 45%. Note that an n-bit prime can yield 0 only if a(pi(p)) is odd, where p is the smallest n-bit prime. That is, for n > 1, there are no zeros from pi(2^n) to pi(2^(n+1)) if A007053(n) is even. - Charles R Greathouse IV, Jul 17 2011

Examples

			a(4) = 3 because ((2 XOR 3) XOR 5) XOR 7 = (1 XOR 5) XOR 7 = 4 XOR 7 = 3
[Or, in base 2]
((10 XOR 11) XOR 101) XOR 111 = (1 XOR 101) XOR 111 = 100 XOR 111 = 11
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=70,prs},prs=Prime[Range[nn]];Table[BitXor@@Take[prs,n],{n,0,nn}]] (* Harvey P. Dale, Jun 23 2016 *)
  • PARI
    al(n)=local(m);vector(n,k,m=bitxor(m,prime(k))) /* Produces a vector without a(0) = 0; Franklin T. Adams-Watters, Jul 17 2011 */
    
  • PARI
    v=primes(300); for(i=2,#v,v[i]=bitxor(v[i],v[i-1])); concat(0, v) \\ Charles R Greathouse IV, Aug 26 2014
    
  • PARI
    q=0; forprime(p=2, 313, print1(q, ","); q=bitxor(q, p)) /* Klaus Brockhaus, Mar 06 2007; adapted by Rémy Sigrist, Oct 23 2017 */
    
  • Python
    from operator import xor
    from functools import reduce
    from sympy import primerange, prime
    def A126084(n): return reduce(xor,primerange(2,prime(n)+1)) if n else 0 # Chai Wah Wu, Jul 09 2022

Formula

a(0) = 0; a(n) = a(n-1) XOR prime(n).

Extensions

More terms from Klaus Brockhaus, Mar 06 2007
Edited by N. J. A. Sloane, Oct 22 2017 (merging old entry A193174 with this)
Edited by Rémy Sigrist, Oct 23 2017

A308710 Primitive practical numbers of the form 2^i * prime(k).

Original entry on oeis.org

6, 20, 28, 88, 104, 272, 304, 368, 464, 496, 1184, 1312, 1376, 1504, 1696, 1888, 1952, 4288, 4544, 4672, 5056, 5312, 5696, 6208, 6464, 6592, 6848, 6976, 7232, 8128, 16768, 17536, 17792, 19072, 19328, 20096, 20864, 21376, 22144, 22912, 23168, 24448, 24704, 25216
Offset: 1

Views

Author

Miko Labalan, Jun 19 2019

Keywords

Comments

Intersection of A267124 and A100368.
a(n) is a number of the form 2^i * prime(k) for i > 0 and A007053(i) < k <= A007053(i+1).
Terms are pseudoperfect numbers, A005835 and are also primitive pseudoperfect numbers, A006036.

Crossrefs

Programs

Formula

a(n) = 2^floor(log_2(prime(n+1))) * prime(n+1).
Previous Showing 51-60 of 140 results. Next