cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 146 results. Next

A334997 Array T read by ascending antidiagonals: T(n, k) = Sum_{d divides n} T(d, k-1) with T(n, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 4, 1, 1, 2, 6, 4, 5, 1, 1, 4, 3, 10, 5, 6, 1, 1, 2, 9, 4, 15, 6, 7, 1, 1, 4, 3, 16, 5, 21, 7, 8, 1, 1, 3, 10, 4, 25, 6, 28, 8, 9, 1, 1, 4, 6, 20, 5, 36, 7, 36, 9, 10, 1, 1, 2, 9, 10, 35, 6, 49, 8, 45, 10, 11, 1, 1, 6, 3, 16, 15, 56, 7, 64, 9, 55, 11, 12, 1
Offset: 1

Views

Author

Stefano Spezia, May 19 2020

Keywords

Comments

T(n, k) is called the generalized divisor function (see Beekman).
As an array with offset n=1, k=0, T(n,k) is the number of length-k chains of divisors of n. For example, the T(4,3) = 10 chains are: 111, 211, 221, 222, 411, 421, 422, 441, 442, 444. - Gus Wiseman, Aug 04 2022

Examples

			From _Gus Wiseman_, Aug 04 2022: (Start)
Array begins:
       k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
  n=1:  1   1   1   1   1   1   1   1   1
  n=2:  1   2   3   4   5   6   7   8   9
  n=3:  1   2   3   4   5   6   7   8   9
  n=4:  1   3   6  10  15  21  28  36  45
  n=5:  1   2   3   4   5   6   7   8   9
  n=6:  1   4   9  16  25  36  49  64  81
  n=7:  1   2   3   4   5   6   7   8   9
  n=8:  1   4  10  20  35  56  84 120 165
The T(4,5) = 21 chains:
  (1,1,1,1,1)  (4,2,1,1,1)  (4,4,2,2,2)
  (2,1,1,1,1)  (4,2,2,1,1)  (4,4,4,1,1)
  (2,2,1,1,1)  (4,2,2,2,1)  (4,4,4,2,1)
  (2,2,2,1,1)  (4,2,2,2,2)  (4,4,4,2,2)
  (2,2,2,2,1)  (4,4,1,1,1)  (4,4,4,4,1)
  (2,2,2,2,2)  (4,4,2,1,1)  (4,4,4,4,2)
  (4,1,1,1,1)  (4,4,2,2,1)  (4,4,4,4,4)
The T(6,3) = 16 chains:
  (1,1,1)  (3,1,1)  (6,2,1)  (6,6,1)
  (2,1,1)  (3,3,1)  (6,2,2)  (6,6,2)
  (2,2,1)  (3,3,3)  (6,3,1)  (6,6,3)
  (2,2,2)  (6,1,1)  (6,3,3)  (6,6,6)
The triangular form T(n-k,k) gives the number of length k chains of divisors of n - k. It begins:
  1
  1  1
  1  2  1
  1  2  3  1
  1  3  3  4  1
  1  2  6  4  5  1
  1  4  3 10  5  6  1
  1  2  9  4 15  6  7  1
  1  4  3 16  5 21  7  8  1
  1  3 10  4 25  6 28  8  9  1
  1  4  6 20  5 36  7 36  9 10  1
  1  2  9 10 35  6 49  8 45 10 11  1
(End)
		

References

  • Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017.

Crossrefs

Cf. A000217 (4th row), A000290 (6th row), A000292 (8th row), A000332 (16th row), A000389 (32nd row), A000537 (36th row), A000578 (30th row), A002411 (12th row), A002417 (24th row), A007318, A027800 (48th row), A335078, A335079.
Column k = 2 of the array is A007425.
Column k = 3 of the array is A007426.
Column k = 4 of the array is A061200.
The transpose of the array is A077592.
The subdiagonal n = k + 1 of the array is A163767.
The version counting all multisets of divisors (not just chains) is A343658.
The strict case is A343662 (row sums: A337256).
Diagonal n = k of the array is A343939.
Antidiagonal sums of the array (or row sums of the triangle) are A343940.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291 counts divisors by Omega.
A251683(n,k) counts strict length k + 1 chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict length k chains of divisors from n to 1.
A337255(n,k) counts strict length k chains of divisors starting with n.

Programs

  • Mathematica
    T[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,1,Length[FactorInteger[n]]}]]; Table[T[n-k,k],{n,1,13},{k,0,n-1}]//Flatten
  • PARI
    T(n, k) = if (k==0, 1, sumdiv(n, d, T(d, k-1)));
    matrix(10, 10, n, k, T(n, k-1)) \\ to see the array for n>=1, k >=0; \\ Michel Marcus, May 20 2020

Formula

T(n, k) = Sum_{d divides n} T(d, k-1) with T(n, 0) = 1 (see Theorem 3 in Beekman's article).
T(i*j, k) = T(i, k)*T(j, k) if i and j are coprime positive integers (see Lemma 1 in Beekman's article).
T(p^m, k) = binomial(m+k, k) for every prime p (see Lemma 2 in Beekman's article).

Extensions

Duplicate term removed by Stefano Spezia, Jun 03 2020

A336424 Number of factorizations of n where each factor belongs to A130091 (numbers with distinct prime multiplicities).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 5, 2, 1, 3, 3, 1, 1, 1, 7, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 9, 2, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 4, 1, 1, 3, 11, 1, 1, 1, 3, 1, 1, 1, 11, 1, 1, 3, 3, 1, 1, 1, 9, 5, 1, 1, 4, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) factorizations for n = 2, 4, 8, 60, 16, 36, 32, 48:
  2  4    8      5*12     16       4*9      32         48
     2*2  2*4    3*20     4*4      3*12     4*8        4*12
          2*2*2  3*4*5    2*8      3*3*4    2*16       3*16
                 2*2*3*5  2*2*4    2*18     2*4*4      3*4*4
                          2*2*2*2  2*2*9    2*2*8      2*24
                                   2*2*3*3  2*2*2*4    2*3*8
                                            2*2*2*2*2  2*2*12
                                                       2*2*3*4
                                                       2*2*2*2*3
		

Crossrefs

A327523 is the case when n is restricted to belong to A130091 also.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A045778 counts strict factorizations.
A074206 counts ordered factorizations.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts nonempty chains of divisors.
A281116 counts factorizations with no common divisor.
A302696 lists numbers whose prime indices are pairwise coprime.
A305149 counts stable factorizations.
A320439 counts factorizations using A289509.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336500 counts divisors of n in A130091 with quotient also in A130091.
A336568 = not a product of two numbers with distinct prime multiplicities.
A336569 counts maximal chains of elements of A130091.
A337256 counts chains of divisors.

Programs

  • Mathematica
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Table[Length[facsusing[Select[Range[2,n],UnsameQ@@Last/@FactorInteger[#]&],n]],{n,100}]

A336500 Number of divisors d|n with distinct prime multiplicities such that the quotient n/d also has distinct prime multiplicities.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 4, 2, 2, 2, 5, 2, 4, 2, 4, 2, 2, 2, 6, 3, 2, 4, 4, 2, 0, 2, 6, 2, 2, 2, 6, 2, 2, 2, 6, 2, 0, 2, 4, 4, 2, 2, 8, 3, 4, 2, 4, 2, 6, 2, 6, 2, 2, 2, 4, 2, 2, 4, 7, 2, 0, 2, 4, 2, 0, 2, 8, 2, 2, 4, 4, 2, 0, 2, 8, 5, 2, 2, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(1) = 1 through a(16) = 5 divisors:
  1  1  1  1  1  2  1  1  1  2  1  1  1  2  3  1
     2  3  2  5  3  7  2  3  5 11  3 13  7  5  2
           4           4  9        4           4
                       8          12           8
                                              16
		

Crossrefs

A336419 is the version for superprimorials.
A336568 gives positions of zeros.
A336869 is the restriction to factorials.
A007425 counts divisors of divisors.
A056924 counts divisors greater than their quotient.
A074206 counts chains of divisors from n to 1.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime multiplicities.
A336424 counts factorizations using A130091.
A336422 counts divisible pairs of divisors, both in A130091.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336423 counts chains in A130091, with maximal version A336569.
A336568 gives numbers not a product of two elements of A130091.
A336571 counts divisor sets using A130091, with maximal version A336570.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],UnsameQ@@Last/@FactorInteger[#]&&UnsameQ@@Last/@FactorInteger[n/#]&]],{n,25}]

A336568 Numbers that are not a product of two numbers each having distinct prime multiplicities.

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 210, 222, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 330, 345, 354, 357, 366, 370, 374, 385, 390, 399, 402, 406, 410, 418, 420, 426, 429
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Comments

First differs from A007304 and A093599 in having 210.
First differs from A287483 in having 222.
First differs from A350352 in having 420.
A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			Selected terms together with their prime indices:
   660: {1,1,2,3,5}
   798: {1,2,4,8}
   840: {1,1,1,2,3,4}
  3120: {1,1,1,1,2,3,6}
  9900: {1,1,2,2,3,3,5}
		

Crossrefs

A336500 has zeros at these positions.
A007425 counts divisors of divisors.
A056924 counts divisors greater than their quotient.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A336424 counts factorizations using A130091.
A336422 counts divisible pairs of divisors, both in A130091.
A327498 is the maximum divisor with distinct prime multiplicities.
A336423 counts chains in A130091, with maximal version A336569.
A336571 counts divisor sets using A130091, with maximal version A336570.

Programs

  • Mathematica
    strsig[n_]:=UnsameQ@@Last/@FactorInteger[n]
    Select[Range[100],Function[n,Select[Divisors[n],strsig[#]&&strsig[n/#]&]=={}]]

A061200 tau_5(n) = number of ordered 5-factorizations of n.

Original entry on oeis.org

1, 5, 5, 15, 5, 25, 5, 35, 15, 25, 5, 75, 5, 25, 25, 70, 5, 75, 5, 75, 25, 25, 5, 175, 15, 25, 35, 75, 5, 125, 5, 126, 25, 25, 25, 225, 5, 25, 25, 175, 5, 125, 5, 75, 75, 25, 5, 350, 15, 75, 25, 75, 5, 175, 25, 175, 25, 25, 5, 375, 5, 25, 75, 210, 25, 125, 5, 75, 25, 125, 5
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_6(n): A034695, (unordered) 2-factorization of n: A038548, (unordered) 3-factorization of n: A034836, A001055, A006218, A061201, A061202, A061203 (partial sums), A061204.
Column k=5 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 5], {n, 77}] (* Robert G. Wilson v *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 5], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,k,sumdiv(k,x,sumdiv(x,y,numdiv(y)))),","))
    
  • PARI
    a(n)=sumdivmult(n,k,sumdivmult(k,x,sumdivmult(x,y,numdiv(y)))) \\ Charles R Greathouse IV, Sep 09 2014
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+4, 4)) \\ Charles R Greathouse IV, Oct 28 2017
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^5)[n]), ", ")) \\ Vaclav Kotesovec, May 06 2025
    
  • Python
    from math import prod, comb
    from sympy import factorint
    def A061200(n): return prod(comb(4+e,4) for e in factorint(n).values()) # Chai Wah Wu, Dec 22 2024

Formula

tau_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k=n}|, number of ordered k-factorizations of n.
tau_k(p^m) = (-1)^(k-1)*binomial(-m-1,k-1), p prime.
limit(tau_k(n)/n^epsilon, n=infinity) = 0, for any epsilon>0.
tau_k(n) = Sum_{d|n} tau_(k-1)(d), tau_1(n)=1.
Dirichlet g.f.: (zeta(s))^k.
For explicit formula, see A007425.
G.f.: Sum_{k>=1} tau_4(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018

A336571 Number of sets of divisors d|n, 1 < d < n, all belonging to A130091 (numbers with distinct prime multiplicities) and forming a divisibility chain.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 5, 1, 3, 3, 8, 1, 5, 1, 5, 3, 3, 1, 14, 2, 3, 4, 5, 1, 4, 1, 16, 3, 3, 3, 17, 1, 3, 3, 14, 1, 4, 1, 5, 5, 3, 1, 36, 2, 5, 3, 5, 1, 14, 3, 14, 3, 3, 1, 16, 1, 3, 5, 32, 3, 4, 1, 5, 3, 4, 1, 35, 1, 3, 5, 5, 3, 4, 1, 36, 8, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) sets for n = 4, 6, 12, 16, 24, 84, 36:
  {}   {}   {}     {}       {}        {}        {}
  {2}  {2}  {2}    {2}      {2}       {2}       {2}
       {3}  {3}    {4}      {3}       {3}       {3}
            {4}    {8}      {4}       {4}       {4}
            {2,4}  {2,4}    {8}       {7}       {9}
                   {2,8}    {12}      {12}      {12}
                   {4,8}    {2,4}     {28}      {18}
                   {2,4,8}  {2,8}     {2,4}     {2,4}
                            {4,8}     {2,12}    {3,9}
                            {2,12}    {2,28}    {2,12}
                            {3,12}    {3,12}    {2,18}
                            {4,12}    {4,12}    {3,12}
                            {2,4,8}   {4,28}    {3,18}
                            {2,4,12}  {7,28}    {4,12}
                                      {2,4,12}  {9,18}
                                      {2,4,28}  {2,4,12}
                                                {3,9,18}
		

Crossrefs

A336423 is the version for chains containing n.
A336570 is the maximal version.
A000005 counts divisors.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A032741 counts proper divisors.
A045778 counts strict factorizations.
A071625 counts distinct prime multiplicities.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336500 counts divisors of n in A130091 with quotient also in A130091.

Programs

  • Mathematica
    strchns[n_]:=If[n==1,1,Sum[strchns[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]];
    Table[strchns[n],{n,100}]

A007428 Moebius transform applied thrice to sequence 1,0,0,0,....

Original entry on oeis.org

1, -3, -3, 3, -3, 9, -3, -1, 3, 9, -3, -9, -3, 9, 9, 0, -3, -9, -3, -9, 9, 9, -3, 3, 3, 9, -1, -9, -3, -27, -3, 0, 9, 9, 9, 9, -3, 9, 9, 3, -3, -27, -3, -9, -9, 9, -3, 0, 3, -9, 9, -9, -3, 3, 9, 3, 9, 9, -3, 27, -3, 9, -9, 0, 9, -27, -3, -9, 9, -27, -3, -3, -3, 9, -9, -9, 9, -27
Offset: 1

Views

Author

Keywords

Comments

Dirichlet inverse of A007425. - R. J. Mathar, Jul 15 2010
abs(a(n)) is the number of ways to write n=xyz where x,y,z are squarefree numbers. - Benoit Cloitre, Jan 02 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Consecutive nested Dirichlet convolution: A063524, A008683 or A007427. - Enrique Pérez Herrero, Jul 12 2010
Cf. A124010.

Programs

  • Haskell
    a007428 n = product
       [a007318' 3 e * cycle [1,-1] !! fromIntegral e | e <- a124010_row n]
    -- Reinhard Zumkeller, Oct 09 2013
    
  • Maple
    möbius := proc(a)  local b, i, mo: b := NULL:
    mo := (m,n) -> `if`(irem(m,n) = 0, numtheory:-mobius(m/n), 0);
    for i to nops(a) do b := b, add(mo(i,j)*a[j], j=1..i) od: [b] end:
    (möbius@@3)([1, seq(0, i=1..77)]); # Peter Luschny, Sep 08 2017
  • Mathematica
    tau[1,n_Integer]:=1; SetAttributes[tau, Listable];
    tau[k_Integer,n_Integer]:=Plus@@(tau[k-1,Divisors[n]])/; k > 1;
    tau[k_Integer,n_Integer]:=Plus@@(tau[k+1,Divisors[n]]*MoebiusMu[n/Divisors[n]]); k<1;
    A007428[n_]:=tau[ -3,n]; (* Enrique Pérez Herrero, Jul 12 2010 *)
    a[n_] := Which[n==1, 1, PrimeQ[n], -3, True, Times @@ Map[Function[e, Binomial[3, e] (-1)^e], FactorInteger[n][[All, 2]]]];
    Array[a, 100] (* Jean-François Alcover, Jun 20 2018 *)
  • PARI
    a(n) = {my(f=factor(n)); for (k=1, #f~, e = f[k,2]; f[k,1] = binomial(3, e)*(-1)^e; f[k,2] = 1); factorback(f);} \\ Michel Marcus, Jan 03 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^3)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (3 choose e) (-1)^e.
Dirichlet g.f.: 1/zeta(s)^3.
From Enrique Pérez Herrero, Jul 12 2010: (Start)
a(n^3) = A008683(n).
a(s) = (-3)^A001221(s) provided s is a squarefree number (A005117). (End)
a(A046101(n)) = 0. - Enrique Pérez Herrero, Sep 07 2017
a(n) = Sum_{a*b*c=n} mu(a)*mu(b)*mu(c). - Benedict W. J. Irwin, Mar 02 2022

A066843 a(n) = Product_{k=1..n} d(k); d(k) = A000005(k) is the number of positive divisors of k.

Original entry on oeis.org

1, 1, 2, 4, 12, 24, 96, 192, 768, 2304, 9216, 18432, 110592, 221184, 884736, 3538944, 17694720, 35389440, 212336640, 424673280, 2548039680, 10192158720, 40768634880, 81537269760, 652298158080, 1956894474240, 7827577896960, 31310311587840, 187861869527040
Offset: 0

Views

Author

Leroy Quet, Jan 20 2002

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = d_3(gcd(i,j)) for 1 <= i,j <= n, where d_3(n) is A007425. - Enrique Pérez Herrero, Aug 12 2011
a(n) is the number of integer sequences of length n where a(m) divides m for every term. - Franklin T. Adams-Watters, Oct 29 2017

Crossrefs

Programs

  • Maple
    with(numtheory):seq(mul(tau(k),k=1..n), n=0..26); # Zerinvary Lajos, Jan 11 2009
    with(numtheory):a[0]:=1: for n from 2 to 26 do a[n]:=a[n-1]*tau(n) od: seq(a[n], n=0..26); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    A066843[n_] := Product[DivisorSigma[0,i], {i,1,n}]; Array[A066843,20] (* Enrique Pérez Herrero, Aug 12 2011 *)
    FoldList[Times, Array[DivisorSigma[0, #] &, 27]] (* Michael De Vlieger, Nov 01 2017 *)
  • PARI
    { p=1; for (n=1, 200, p*=length(divisors(n)); write("b066843.txt", n, " ", p) ) } \\ Harry J. Smith, Apr 01 2010

Formula

a(n) = Product_{p=primes<=n} Product_{1<=k<=log(n)/log(p)} (1 +1/k)^floor(n/p^k). - Leroy Quet, Mar 20 2007
a(n) = Product_{k=1..n} Product_{p prime<=n} (v_p(k) + 1), where v_p(k) is the exponent of highest power of p dividing k. - Ridouane Oudra, Apr 15 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 19 2023

A336423 Number of strict chains of divisors from n to 1 using terms of A130091 (numbers with distinct prime multiplicities).

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 1, 4, 2, 0, 1, 5, 1, 0, 0, 8, 1, 5, 1, 5, 0, 0, 1, 14, 2, 0, 4, 5, 1, 0, 1, 16, 0, 0, 0, 0, 1, 0, 0, 14, 1, 0, 1, 5, 5, 0, 1, 36, 2, 5, 0, 5, 1, 14, 0, 14, 0, 0, 1, 0, 1, 0, 5, 32, 0, 0, 1, 5, 0, 0, 1, 35, 1, 0, 5, 5, 0, 0, 1, 36, 8, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) chains for n = 4, 8, 12, 16, 24, 32:
  4/1    8/1      12/1      16/1        24/1         32/1
  4/2/1  8/2/1    12/2/1    16/2/1      24/2/1       32/2/1
         8/4/1    12/3/1    16/4/1      24/3/1       32/4/1
         8/4/2/1  12/4/1    16/8/1      24/4/1       32/8/1
                  12/4/2/1  16/4/2/1    24/8/1       32/16/1
                            16/8/2/1    24/12/1      32/4/2/1
                            16/8/4/1    24/4/2/1     32/8/2/1
                            16/8/4/2/1  24/8/2/1     32/8/4/1
                                        24/8/4/1     32/16/2/1
                                        24/12/2/1    32/16/4/1
                                        24/12/3/1    32/16/8/1
                                        24/12/4/1    32/8/4/2/1
                                        24/8/4/2/1   32/16/4/2/1
                                        24/12/4/2/1  32/16/8/2/1
                                                     32/16/8/4/1
                                                     32/16/8/4/2/1
		

Crossrefs

A336569 is the maximal case.
A336571 does not require n itself to have distinct prime multiplicities.
A000005 counts divisors.
A007425 counts divisors of divisors.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts nonempty strict chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336500 counts divisors of n in A130091 with quotient also in A130091.
A337256 counts strict chains of divisors.

Programs

  • Mathematica
    strchns[n_]:=If[n==1,1,If[!UnsameQ@@Last/@FactorInteger[n],0,Sum[strchns[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]]];
    Table[strchns[n],{n,100}]

A052213 Numbers k with prime signature(k) = prime signature(k+1).

Original entry on oeis.org

2, 14, 21, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 253, 285, 296, 298, 301, 302, 326, 332, 334, 375, 381, 387, 393, 394, 429, 434, 445, 446, 453, 481
Offset: 1

Views

Author

Erich Friedman, Jan 29 2000

Keywords

Comments

This sequence is infinite, see A189982 and Theorem 4 in Goldston-Graham-Pintz-Yıldırım. - Charles R Greathouse IV, Jul 17 2015
This is a subsequence of A005237, hence a(n) >> n sqrt(log log n) by the Erdős-Pomerance-Sárközy result cited there. - Charles R Greathouse IV, Jul 17 2015
Sequence is not the same as A280074, first deviation is at a(212): a(212) = 2041, A280074(212) = 2024. Number 2024 is the smallest number n such that A007425(n) = A007425(n+1) with different prime signatures of numbers n and n+1 (2024 = 2^3 * 11 * 23, 2025 = 3^4 * 5^2; A007425(2024) = A007425(2025) = 90). Conjecture: also numbers n such that Product_{d|n} tau(d) = Product_{d|n+1} tau(d). - Jaroslav Krizek, Dec 25 2016

Examples

			14 = 2^1*7^1 and 15 = 3^1*5^1, so both have prime signature {1,1}. Thus, 14 is a term.
		

Crossrefs

Programs

  • Mathematica
    pri[n_] := Sort[ Transpose[ FactorInteger[n]] [[2]]]; Select[ Range[ 2, 1000], pri[#] == pri[#+1] &]
    Rest[SequencePosition[Table[Sort[FactorInteger[n][[All,2]]],{n,500}],{x_,x_}][[All,1]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 28 2017 *)
  • PARI
    lista(nn) = for (n=1, nn-1, if (vecsort(factor(n)[,2]) == vecsort(factor(n+1)[,2]), print1(n, ", "));); \\ Michel Marcus, Jun 10 2015
    
  • Python
    from sympy import factorint
    def aupto(limit):
        alst, prevsig = [], [1]
        for k in range(3, limit+2):
            sig = sorted(factorint(k).values())
            if sig == prevsig: alst.append(k - 1)
            prevsig = sig
        return alst
    print(aupto(250)) # Michael S. Branicky, Sep 20 2021
Previous Showing 31-40 of 146 results. Next