cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 61 results. Next

A175317 a(n) = Sum_{d|n} A007955(d) where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 3, 4, 11, 6, 42, 8, 75, 31, 108, 12, 1778, 14, 206, 234, 1099, 18, 5901, 20, 8116, 452, 498, 24, 333618, 131, 692, 760, 22166, 30, 810372, 32, 33867, 1104, 1176, 1238, 10085333, 38, 1466, 1538, 2568180, 42, 3112382, 44, 85690, 91386, 2142, 48, 255138610
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2010

Keywords

Examples

			For n = 4, with b(n) = A007955(n), a(4) = b(1) + b(2) + b(4) = 1 + 2 + 8 = 11.
		

Crossrefs

Subsequences: A008864, A181388 \ {0}.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(DivisorSigma[0, #]/2) &]; Array[a, 50] (* Amiram Eldar, Oct 23 2021 *)
  • PARI
    a(n) = sumdiv(n, d, vecprod(divisors(d))); \\ Michel Marcus, Dec 09 2014 and Oct 23 2021
    
  • Python
    from math import isqrt
    from sympy import divisor_count, divisors
    def A175317(n): return sum(isqrt(d)**c if (c:=divisor_count(d)) & 1 else d**(c//2) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 24 2022

Formula

From Bernard Schott, Oct 26 2021: (Start)
a(1) = 1 (the only fixed point).
a(p) = p+1 for prime p only.
a(2^k) = A181388(k+1). (End)

Extensions

Corrected by Jaroslav Krizek, Apr 02 2010
Edited and more terms from Michel Marcus, Dec 09 2014

A211779 a(n) = Sum_{d_A000203(x).

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 11, 5, 10, 1, 27, 1, 12, 11, 26, 1, 33, 1, 35, 13, 16, 1, 70, 7, 18, 18, 43, 1, 68, 1, 57, 17, 22, 15, 107, 1, 24, 19, 92, 1, 84, 1, 59, 48, 28, 1, 161, 9, 59, 23, 67, 1, 112, 19, 114, 25, 34, 1, 217, 1, 36, 58, 120, 21, 116, 1, 83, 29
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2012

Keywords

Comments

The numbers n < 1000 such that n divides a(n) are 4, 10, 42, and 90. (See A224488).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1, d], {d, Most[Divisors[n]]}], {n, 100}] (* T. D. Noe, Apr 26 2012 *)
  • PARI
    a(n)=sumdiv(n,d,sigma(d))-sigma(n) \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(n) = A007429(n) - A000203(n) = A211780(n) - A000203(n) + n.
G.f.: sum(n>=1, A000203(n)*x^(2*n)/(1-x^n) ). - Mircea Merca, Feb 26 2014
a(n) = Sum_{d|n} A001065(d). - Antti Karttunen, Nov 13 2017
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/72 - Pi^2/12 = 0.530437... . - Amiram Eldar, Mar 17 2024

A263832 The number c_{Cc,pi_1(B_2)}(n) of the second amphicosm n-coverings over the second amphicosm.

Original entry on oeis.org

1, 0, 5, 2, 7, 0, 9, 6, 18, 0, 13, 10, 15, 0, 35, 14, 19, 0, 21, 14, 45, 0, 25, 30, 38, 0, 58, 18, 31, 0, 33, 30, 65, 0, 63, 36, 39, 0, 75, 42, 43, 0, 45, 26, 126, 0, 49, 70, 66, 0, 95, 30, 55, 0, 91, 54, 105, 0, 61, 70, 63, 0, 162, 62, 105, 0, 69
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    sigma[n_] := DivisorSigma[1, n]; q = Quotient;
    a[n_] := Switch[Mod[n, 4], 0, Sum[sigma[q[n, 2d]] - sigma[q[n, 4d]], {d, Divisors[q[n, 4]]}], 2, 0, 1|3, Sum[sigma[d], {d, Divisors[n]}]];
    Array[a, 70] (* Jean-François Alcover, Dec 01 2018, after Gheorghe Coserea *)
  • PARI
    A007429(n) = sumdiv(n, d, sigma(d));
    a(n) = {
      if (n%2, A007429(n), if (n%4, 0,
          sumdiv(n\4, d, sigma(n\(2*d)) - sigma(n\(4*d)))));
    };
    vector(67, n, a(n))  \\ Gheorghe Coserea, May 05 2016

Extensions

More terms from Gheorghe Coserea, May 05 2016

A319131 a(n) = Sum_{d|n} Sum_{p|d, p prime} p.

Original entry on oeis.org

0, 2, 3, 4, 5, 10, 7, 6, 6, 14, 11, 17, 13, 18, 16, 8, 17, 18, 19, 23, 20, 26, 23, 24, 10, 30, 9, 29, 29, 40, 31, 10, 28, 38, 24, 30, 37, 42, 32, 32, 41, 48, 43, 41, 27, 50, 47, 31, 14, 26, 40, 47, 53, 26, 32, 40, 44, 62, 59, 64, 61, 66, 33, 12, 36, 64, 67, 59, 52, 56
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2018

Keywords

Comments

Inverse Möbius transform of A008472.

Examples

			a(12) = 13 as 12 has 6 divisors and 2 * 6 * (2/3) + 3 * 6 * (1/2) = 17. - _David A. Corneth_, Oct 08 2019
		

Crossrefs

Programs

  • Magma
    [0] cat  [&+[&+[PrimeDivisors(d)[i]:i in [1..#PrimeDivisors(d)]]:d in Set(Divisors(n)) diff {1}]:n in [2..70]]; // Marius A. Burtea, Oct 08 2019
    
  • Magma
    [0] cat [&+[p*#Divisors(n div p):p in PrimeDivisors(n)]:n in [2..70]]; // Marius A. Burtea, Oct 08 2019 (According to the formula given by Ridouane Oudra)
  • Maple
    with(numtheory): seq(add(p*tau(n/p), p in factorset(n)), n=1..80); # Ridouane Oudra, Oct 08 2019
  • Mathematica
    Table[Sum[Total[Select[Divisors[d], PrimeQ]], {d, Divisors[n]}], {n, 70}]
    nmax = 70; Rest[CoefficientList[Series[Sum[DivisorSum[k, # &, PrimeQ[#] &] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 70; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^(DivisorSum[k, # &, PrimeQ[#] &]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
  • PARI
    a(n) = sumdiv(n, d, my(f=factor(d)); vecsum(f[,1])); \\ Michel Marcus, Oct 08 2019
    
  • PARI
    a(n) = my(f = factor(n), nd = numdiv(f)); sum(i = 1, #f~, f[i, 1] * nd / (f[i, 2] + 1) * f[i, 2]) \\ David A. Corneth, Oct 08 2019
    

Formula

G.f.: Sum_{k>=1} A008472(k)*x^k/(1 - x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(A008472(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
a(p^k) = p*k, where p is a prime.
a(n) = Sum_{p|n} p*tau(n/p), where p is a prime and tau(n) = A000005(n). - Ridouane Oudra, Oct 08 2019
a(n) = Sum_{p|n} p*tau(n)*(e_p-1)/(e_p) where e_p is the exponent of p in the factorization of n. - David A. Corneth, Oct 08 2019
a(n) = Sum_{d|n} sopf(d). - Wesley Ivan Hurt, May 23 2021

A134577 A127170 * A127648.

Original entry on oeis.org

1, 2, 2, 2, 0, 3, 3, 4, 0, 4, 2, 0, 0, 0, 5, 4, 4, 6, 0, 0, 6, 2, 0, 0, 0, 0, 0, 7, 4, 6, 0, 8, 0, 0, 0, 8, 3, 0, 6, 0, 0, 0, 0, 0, 9, 4, 4, 0, 0, 10, 0, 0, 0, 0, 10
Offset: 1

Views

Author

Gary W. Adamson, Nov 02 2007

Keywords

Comments

Row sums = A007429: (1, 4, 5, 11, 7, 20, 9, 26, ...).
Left border = A000005: (1, 2, 2, 3, 2, 4, 2, ...).
A134577 * [1/1, 1/2, 1/3, ...] = A007425: (1, 3, 3, 6, 3, 9, 3, 10, ...).
A134577 * [1, 2, 3, ...] = A007433: (1, 6, 11, 27, 27, 66, ...).
A134577 * A000005 = A034761: (1, 6, 8, 23, 12, 48, ...).

Examples

			First few rows of the triangle:
  1;
  2, 2;
  2, 0, 3;
  3, 4, 0, 4;
  2, 0, 0, 0, 5
  4, 4, 6, 0, 0, 6;
  2, 0, 0, 0, 0, 0, 7;
  4, 6, 0, 8, 0, 0, 0, 8;
  ...
		

Crossrefs

Formula

A221219 Numbers k such that sigma(k) divides Sum_{d|k} sigma(d).

Original entry on oeis.org

1, 198, 608, 4680, 11322, 20826, 56608, 60192, 179424, 1737000, 2578968, 3055150, 3441888, 5604192, 6008184, 6331104, 302459850, 320457888, 477229032, 565344850, 579667086, 589459104, 731925000, 766073448, 907521650, 928765600, 3586977576, 3732082848, 6487717600
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2013

Keywords

Comments

A066218 is a subsequence of this sequence.
Numbers k such that A000203(k) divides A007429(k). - Jaroslav Krizek, Dec 22 2018
Corresponding values of (Sum_{d|k} sigma(d)) / sigma(k) for numbers k from this sequence: 1, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, ... - Jaroslav Krizek, Dec 22 2018

Examples

			4680 is in the sequence because sigma(4680)=16380, its proper divisors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 18, 20, 24, 26, 30, 36, 39, 40, 45, 52, 60, 65, 72, 78, 90, 104, 117, 120, 130, 156, 180, 195, 234, 260, 312, 360, 390, 468, 520, 585, 780, 936, 1170, 1560, 2340 and the sum of their sigma values is 32760. Finally 32760/16380=2.
		

Crossrefs

Programs

  • Magma
    [k: k in [1..1000000] | &+[SumOfDivisors(d): d in Divisors(k)] mod  SumOfDivisors(k) eq 0] // Jaroslav Krizek, Dec 22 2018
    
  • Maple
    with(numtheory);
    A221219:=proc(q) local a,b,j,n;
    for n from 1 to q do a:=divisors(n); b:=add(sigma(a[j]),j=1..nops(a));
      if type(b/sigma(n),integer) then print(n); fi; od; end:
    A221219(10^10);
  • Mathematica
    f1[p_, e_] := (p*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; f2[p_, e_] := (p^(e+1) - 1)/(p - 1); aQ[1] = True; aQ[n_] := Module[{f = FactorInteger[n]}, Divisible[Times @@ f1 @@@ f, Times @@ f2 @@@ f]]; Select[Range[10^5], aQ] (* Amiram Eldar, Dec 23 2018 *)
  • PARI
    isok(n) = (sumdiv(n, d, sigma(d)) % sigma(n) == 0); \\ Michel Marcus, Dec 22 2018

Extensions

a(10)-a(28) from Donovan Johnson, Apr 05 2013
1 prepended by Jaroslav Krizek, Dec 22 2018

A305127 Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^(sigma(k)/k), where sigma(k) is the sum of the divisors of k.

Original entry on oeis.org

1, 1, 5, 23, 179, 1279, 13699, 135085, 1764377, 22527521, 344625461, 5283739471, 94562354875, 1685808248383, 33947023942259, 694786150879829, 15613612524749489, 357353282848083265, 8880505496901812197, 224851013929747732231, 6106205671049245677251, 169523515381173773551871
Offset: 0

Views

Author

Ilya Gutkovskiy, May 26 2018

Keywords

Comments

a(n)/n! is the Euler transform of [1, 3/2, 4/3, 7/4, 6/5, ... = sums of reciprocals of divisors of 1, 2, 3, 4, 5, ...].

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc(n) option remember; `if`(n = 0, 1, add(add(sigma(d), d = divisors(j))*a(n-j), j = 1..n)/n) end proc; seq(n!*a(n), n = 0..20); # Vaclav Kotesovec, Sep 04 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[1, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Exp[Sum[Sum[x^(j k)/(j k (1 - x^(j k))), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d DivisorSigma[-1, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 21}]
    nmax = 21; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[1, k]/k, j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2018 *)

Formula

E.g.f.: Product_{k>=1} 1/(1 - x^k)^(A017665(k)/A017666(k)).
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} x^(j*k)/(j*k*(1 - x^(j*k)))).
log(a(n)/n!) ~ sqrt(n) * Pi^2 / 3. - Vaclav Kotesovec, Sep 04 2018

A318491 a(n) is the numerator of Sum_{d|n} Sum_{j|d} 1/j.

Original entry on oeis.org

1, 5, 7, 17, 11, 35, 15, 49, 34, 11, 23, 119, 27, 75, 77, 129, 35, 85, 39, 187, 5, 115, 47, 343, 86, 135, 142, 255, 59, 77, 63, 321, 161, 175, 33, 289, 75, 195, 63, 539, 83, 25, 87, 391, 374, 235, 95, 301, 162, 43, 245, 459, 107, 355, 23, 105, 91, 295, 119, 1309, 123, 315, 170, 769, 297
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 27 2018

Keywords

Examples

			1, 5/2, 7/3, 17/4, 11/5, 35/6, 15/7, 49/8, 34/9, 11/2, 23/11, 119/12, 27/13, 75/14, 77/15, 129/16, ...
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local d;
       numer(add(numtheory:-sigma(d)/d, d = numtheory:-divisors(n))) end proc:
    map(f, [$1..65]); # Robert Israel, Jan 13 2025
  • Mathematica
    Numerator[Table[Sum[DivisorSigma[-1, d], {d, Divisors[n]}], {n, 65}]]
    Numerator[Table[Sum[DivisorSigma[1, d]/d, {d, Divisors[n]}], {n, 65}]]
    Numerator[Table[Sum[d DivisorSigma[0, d], {d, Divisors[n]}]/n, {n, 65}]]
    nmax = 65; Rest[Numerator[CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/(k (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x]]]
    nmax = 65; Rest[Numerator[CoefficientList[Series[-Log[Product[(1 - x^k)^DivisorSigma[0, k], {k, 1, nmax}]], {x, 0, nmax}], x]]]
  • PARI
    a(n) = numerator(sumdiv(n, d, sumdiv(d, j, 1/j))); \\ Michel Marcus, Aug 28 2018

Formula

Numerators of coefficients in expansion of Sum_{k>=1} sigma(k)*x^k/(k*(1 - x^k)), where sigma(k) = sum of divisors of k (A000203).
Numerators of coefficients in expansion of -log(Product_{k>=1} (1 - x^k)^tau(k)), where tau(k) = number of divisors of k (A000005).
a(n) = numerator of Sum_{d|n} sigma(d)/d.
a(n) = numerator of (1/n)*Sum_{d|n} d*tau(d).
If p is a prime, a(p) = 2*p + 1.
Sum_{k=1..n} a(k)/A318492(k) ~ zeta(2) * n * (log(n) + 2*gamma - 1 + zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2024

A344044 a(n) = Sum_{d|n} sigma(d)^3.

Original entry on oeis.org

1, 28, 65, 371, 217, 1820, 513, 3746, 2262, 6076, 1729, 24115, 2745, 14364, 14105, 33537, 5833, 63336, 8001, 80507, 33345, 48412, 13825, 243490, 30008, 76860, 66262, 190323, 27001, 394940, 32769, 283584, 112385, 163324, 111321, 839202, 54873, 224028, 178425, 812882, 74089
Offset: 1

Views

Author

Seiichi Manyama, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[1, #]^3 &]; Array[a, 41] (* Amiram Eldar, May 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d)^3);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)^3*x^k/(1-x^k)))

Formula

G.f.: Sum_{k >= 1} sigma(k)^3 * x^k/(1 - x^k).
If p is prime, a(p) = 1 + (p+1)^3.
Sum_{k=1..n} a(k) ~ c * n^4, where c = (Pi^10*zeta(3)/194400) * Product_{p prime} (1 + 2/p^2 + 2/p^3 + 1/p^5) = 1.6422194986... . - Amiram Eldar, Nov 20 2022

A127172 Cube of A051731.

Original entry on oeis.org

1, 3, 1, 3, 0, 1, 6, 3, 0, 1, 3, 0, 0, 0, 1, 9, 3, 3, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 10, 6, 0, 3, 0, 0, 0, 1, 6, 0, 3, 0, 0, 0, 0, 0, 1, 9, 3, 0, 0, 0, 3, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 06 2007

Keywords

Comments

Nonzero terms in every column = A007425: (1, 3, 3, 6, 3, 9, 3, ...).
Row sums = A007426: (1, 4, 4, 20, 4, 16, ...).
A127172 * mu(n) = d(n); or A127172 * A008683 = A000005.
A127172 * d(n) = tau_5(n); or A127172 * A000005 = A061200.
A127172 * phi(n) = A007429: (1, 4, 5, 11, 7, 20, ...); or: A127172 * A000010 = A007429.
Note that A051731 * d(n) = row sums of A127172; or A051731 * A000005 = A007425.
Also, A126988 * mu(n) = phi(n); or A126988 * A008683 = A000010.
A126988 * phi(n) = A018804: (1, 3, 5, 8, 9, 15, ...); = A127170 * mu(n).

Examples

			First few rows of the triangle:
   1;
   3, 1;
   3, 0, 1;
   6, 3, 0, 1;
   3, 0, 0, 0, 1;
   9, 3, 3, 0, 0, 1;
   3, 0, 0, 0, 0, 0, 1;
  10, 6, 0, 3, 0, 0, 0, 1;
   6, 0, 3, 0, 0, 0, 0, 0, 1;
   9, 3, 0, 0, 3, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

Cube of A051731 A007425: (1, 3, 3, 6, 3, 9, 3, ...) in every column k, interspersed with (k-1) zeros.
Previous Showing 11-20 of 61 results. Next