cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 83 results. Next

A261246 Positive integers D such that the generalized Pell equation X^2 - D Y^2 = 2 is soluble.

Original entry on oeis.org

2, 7, 14, 23, 31, 34, 46, 47, 62, 71, 79, 94, 98, 103, 119, 127, 142, 151, 158, 167, 191, 194, 199, 206, 223, 238, 239, 254, 263, 271, 287, 302, 311, 322, 334, 343, 359, 367, 382, 383, 386, 391, 398, 431, 439, 446, 463, 478, 479, 482, 487, 503, 511
Offset: 1

Views

Author

Wolfdieter Lang, Sep 06 2015

Keywords

Comments

For the fundamental positive solution x(n)^2 - a(n)*y(n)^2 = 2 see (x(n) = A261247(n), y(n) = A261248(n)), for n >= 1.
Conjecture: The sequence consists of all numbers D not a square and even D = 2*d has odd d with prime factors of the form 1 or 7 (mod 8). Odd D has prime factors of the form 1 or 7 (mod 8) but there is an odd number of primes of the form 7 (mod 8). The following will prove that these conditions for D are necessary in order to have solutions.
This conjecture is false. For the odd D case see the counterexamples in A263010, and for the even D in A264352. - Wolfdieter Lang, Nov 12 2015
If there is a solution for D, D not a square, then only one class of solution exists due to Nagell's Theorem 110, p. 208, because then 2 divides 2*D. All solutions will be proper because 2 is a prime.
For the even prime D = p = 2 the positive fundamental solution is [x(1) = 2, y(1) = 1].
For odd primes D = p there can be solutions only for p == +7 (mod 8), that is p from A007522. Then x and y are both odd. Proof: Consider a solution of x^2 - p*y^2 = 2. The parities of x and y have to be either even and even or odd and odd. For odd x one has x^2 == +1 (mod 8) (because x^2 = 8*T(X) + 1 with x = 2*X+1 and the triangular numbers T = A000217); similarly for y^2 if y is odd. In the even-even case x^2 and y^2 are both congruent to 4 (mod 8). The even-even case leads to 4 - 4*p = 2 (mod 8), excluding all odd p, namely p == 1, 3, 5, 7 (mod 8). The odd-odd case is 1 - p*1 = 2 (mod 8), and p == 1, 3, 5 (mod 8) are excluded. Therefore, only p == 7 (mod 8) qualifies for a solution, and then x and y will be both odd.
For D = p == 7 (mod 8) from A007522 one can test if there exists a fundamental positive solution (at most one class can exist, therefore there is either no solution or just one) [2*U(p)+1, 2*V(p)+1] by checking the two inequalities (see Nagell, eq. (4) and (5), p. 206) 0 <= V(p) < floor((Y(p)/sqrt(X(p) + 1) - 1)/2) and 0 <= U(p) <= floor((sqrt(X(p) + 1) - 1)/2), with the positive fundamental solution [X(p), Y(p)] of X^2 - p*Y^2 = +1. These solutions can be found in (A033313(k), A033317(k)) if A000037(k) is the prime p == 7 (mod 8) one is testing.
For composite even D there are solutions only if D/2 is odd. Proof: If D is even then x has to be even, hence x^2 == 0 (mod 4) and then D*y^2 == -2 (mod 4), hence D cannot be 0 (mod 4). Thus an even D can only be of the form D = 2*d with d odd. The modulo 3 and modulo 5 argument used in the next case will show that d can have only prime factors of the form +1 or -1 (mod 8).
For composite odd D one finds like above that the even-even x and y case is excluded, and the odd-odd case needs D == -1 (mod 8) == 7 (mod 8). Hence a candidate for D is from A004771 - A007522. D cannot have any prime factor p of the form 3 or 5 (mod 8) because otherwise x^2 == 2 (mod p), but the Legendre symbol (2/p) = -1 for such p's (see, e.g., Nagell, Theorem 81, p. 136). For example, D = 15 = 3*5 cannot have a solution. Thus the only candidates for D have prime factors p of the form +1 or +7 (mod 8), with the number of the latter ones being odd. E.g., D = 7*17 = 119 qualifies as a candidate and it has indeed solutions, namely the ones obtainable from the fundamental one [11, 1].
The general proper positive solutions for D(n) = a(n) are obtained from the fundamental ones [x(n), y(n)] given in A261247 and A261248 with the help of powers of the matrix M(n) = [[u(n), D(n)*v(n)], [v(n), u(n)]], where u(n) and v(n) are the positive fundamental solutions of U(n) - D(n)*V(n) = 1, by (x(n; k), y(n; k))^T = M(n)^k (x(n), y(n))^T (T for transposed), for k >= 0. [u(n), v(n)] = [A033313(j(n)), A033317(j(n))] if A000037(j(n)) = D(n) = a(n).
Observation: All degrees (7, 47, 79, 103, 119, 127) of the modular equations derived for solving Ramanujan's question 699 by Galkin & Kozirev (see reference and A318732) are terms of this sequence. - Hugo Pfoertner, Sep 24 2023

Examples

			The first fundamental solutions [x(n), y(n)] are (the first entry gives D(n)=a(n)):
[2, [2, 1]], [7, [3, 1]], [14, [4, 1]],
[23, [5, 1]], [31, [39, 7]], [34, [6, 1]],
[46, [156, 23]], [47, [7, 1]], [62, [8, 1]],
[71, [59, 7]], [79, [9, 1]], [94, [1464, 151]],
[98, [10, 1]], [103, [477, 47]], [119, [11, 1]],
[127, [2175, 193]], [142, [12, 1]],
[151, [41571, 3383]], [158, [88, 7]],
[167, [13, 1]], [191, [2999, 217]],
[194, [14, 1]], [199, [127539, 9041]],
[206, [244, 17]], [223, [15, 1]], [238, [108, 7]],
[239, [2489, 161]], ...
		

References

  • J. W. S. Cassels, Rational Quadratic Forms, Cambridge, 1978; see Chap. 3.
  • V. M. Galkin, O. R. Kozyrev, On an algebraic problem of Ramanujan, pp. 89-94 in Number Theoretic And Algebraic Methods In Computer Science - Proceedings Of The International Conference, Moscow 1993, Ed. Horst G. Zimmer, World Scientific, 31 Aug 1995
  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.

Crossrefs

See also A038873 (2 and primes == +-1 mod 8), A001132.

Programs

  • Mathematica
    Select[Range[600], False =!= Reduce[x^2 - # y^2 == 2, {x, y}, Integers] &] (* Giovanni Resta, Aug 12 2017 *)

A188172 Number of divisors d of n of the form d == 7 (mod 8).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 23 2011

Keywords

Examples

			a(A007522(i)) = 1, any i.
		

Crossrefs

Programs

  • Haskell
    a188172 n = length $ filter ((== 0) . mod n) [7,15..n]
    -- Reinhard Zumkeller, Mar 26 2011
    
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A188172 := proc(n) sigmamr(n,8,7) ; end proc:
  • Mathematica
    Table[Count[Divisors[n],?(Mod[#,8]==7&)],{n,90}] (* _Harvey P. Dale, Mar 08 2014 *)
  • PARI
    a(n) = sumdiv(n, d, (d % 8) == 7); \\ Amiram Eldar, Nov 25 2023

Formula

A188170(n)+a(n) = A001842(n).
A188169(n)+A188170(n)-A188171(n)-a(n) = A002325(n).
a(A188226(n))=n and a(m)<>n for m<A188226(n), n>=0; a(A141164(n))=1. - Reinhard Zumkeller, Mar 26 2011
G.f.: Sum_{k>=1} x^(7*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(7,8) - (1 - gamma)/8 = -0.212276..., gamma(7,8) = -(psi(7/8) + log(8))/8 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A014754 Primes p == 1 mod 8 such that 2 and -2 are both 4th powers (one implies other) mod p.

Original entry on oeis.org

73, 89, 113, 233, 257, 281, 337, 353, 577, 593, 601, 617, 881, 937, 1033, 1049, 1097, 1153, 1193, 1201, 1217, 1249, 1289, 1433, 1481, 1553, 1601, 1609, 1721, 1753, 1777, 1801, 1889, 1913, 2089, 2113, 2129, 2273, 2281, 2393, 2441, 2473, 2593, 2657, 2689
Offset: 1

Views

Author

Keywords

Comments

Primes p such that x^4 == 2 has more than two (in fact four) solutions mod p. This is the sequence of terms common to A040098 (primes p such that x^4 == 2 has a solution mod p) and A007519 (primes of form 8n+1). Solutions mod p are represented by integers from 0 to p - 1. For p > 2, i is a solution mod p of x^4 == 2 iff p - i is a solution mod p of x^4 == 2, thus the sum of first and fourth solution is p and so is the sum of second and third solution. The solutions are given in A065909, A065910, A065911 and A065912. - Klaus Brockhaus, Nov 28 2001
Primes of the form x^2+64y^2. - T. D. Noe, May 13 2005

Crossrefs

Programs

  • PARI
    A014754(m) = local(p,s,x,z); forprime(p = 3,m,s = []; for(x = 0,p-1, if(x^4%p == 2%p,s = concat(s,[x]))); z = matsize(s)[2]; if(z>2,print1(p,",")))
    
  • PARI
    {a(n) = local(m, c, x); if( n<1, 0, c = 0; m = 1; while( cMichael Somos, Mar 22 2008 */
    
  • PARI
    forprime(p=1, 9999, p%8==1&&ispower(Mod(2, p), 4)&&print1(p", ")) \\ M. F. Hasler, Feb 18 2014
    
  • PARI
    is_A014754(p)={p%8==1&&ispower(Mod(2, p), 4)&&isprime(p)} \\ M. F. Hasler, Feb 18 2014

Extensions

Removed erroneous Mma program; extended b-file using first PARI program of M. F. Hasler. - N. J. A. Sloane, Jun 06 2014

A121706 a(n) = Sum_{k=1..n-1} k^n.

Original entry on oeis.org

0, 1, 9, 98, 1300, 20515, 376761, 7907396, 186884496, 4914341925, 142364319625, 4505856912854, 154718778284148, 5729082486784839, 227584583172284625, 9654782997596059912, 435659030617933827136, 20836030169620907691465
Offset: 1

Views

Author

Alexander Adamchuk, Aug 16 2006

Keywords

Comments

n^3 divides a(n) for n in A121707.
It appears that p^(3k-1) divides a(p^k) for all integer k > 1 and prime p > 2:
for prime p > 2, p^2 divides a(p), p^5 divides a(p^2) and p^8 divides a(p^3).
Additionally, p^3 divides a(3p) for prime p > 2.
For prime p > 3, p divides a(p+1) and p^3 divides a(2p+1);
for prime p > 5, p divides a(3p+1) and p^3 divides a(4p+1);
for prime p > 7, p divides a(5p+1) and p^3 divides a(6p+1):
It appears that p divides a((2k+1)p+1) for integer k >= 0 and prime p > 2k+3, and p^3 divides a(2kp+1) for integer k > 0 and prime p > 2k+2.
p divides a((p+1)/2) for primes in A002145: primes of the form 4n+3, n >= 1.
p^2 divides a((p+1)/2) for primes in A007522: primes of the form 8n+7, n >= 0.
n*(2*n+1) divides a(2*n+1) for n >= 1. - Franz Vrabec, Dec 20 2020

Crossrefs

Programs

Formula

a(n) = Sum(k^n, k=1..n) - n^n = A031971(n) - A000312(n) for n > 1.
a(n) = zeta(-n) - zeta(-n, n).

Extensions

Edited by M. F. Hasler, Jul 22 2019

A101996 Primes of the form 8*k-1 such that 4*k-1, 16*k-1, 32*k-1 and 64*k-1 are also primes.

Original entry on oeis.org

359, 107279, 126839, 253679, 254279, 508559, 592199, 681839, 1214639, 1621079, 2138399, 2245319, 3197399, 3243239, 3641999, 3732479, 3825359, 3841919, 4090679, 4276799, 4315799, 4490639, 4556159, 4714439, 5335559, 5731679
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 359 is a term.
		

Crossrefs

Programs

  • Mathematica
    8#-1&/@Select[Range[720000],AllTrue[{4,8,16,32,64}#-1,PrimeQ]&] (* Harvey P. Dale, Jan 17 2023 *)
    Select[Table[2^Range[2,6] n-1,{n,750000}],AllTrue[#,PrimeQ]&][[;;,2]] (* Harvey P. Dale, Jun 03 2023 *)
  • PARI
    is(k) = if(k % 8 == 7, my(m = k\8 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1) && isprime(64*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 8*A101994(n) - 1 = 2*A101995(n) + 1. - Amiram Eldar, May 13 2024

Extensions

Corrected by T. D. Noe, Nov 15 2006

A127590 Numbers n such that 16n+5 is prime.

Original entry on oeis.org

0, 2, 3, 6, 9, 11, 12, 14, 17, 18, 23, 24, 26, 38, 41, 42, 44, 47, 48, 51, 53, 62, 63, 66, 68, 69, 77, 81, 86, 89, 93, 101, 102, 104, 108, 116, 117, 123, 128, 129, 138, 143, 144, 146, 147, 149, 152, 159, 167, 168, 171, 174, 177, 182, 191, 194
Offset: 1

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[16n + 5], AppendTo[a, n]], {n, 0, 200}]; a
    Select[Range[0,200],PrimeQ[16#+5]&] (* Harvey P. Dale, Aug 31 2020 *)
  • PARI
    is(n)=isprime(16*n+5) \\ Charles R Greathouse IV, Feb 17 2017

A237599 Positive integers k such that x^2 - 6xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

4, 7, 8, 16, 23, 28, 31, 32, 36, 47, 56, 63, 64, 68, 71, 72, 79, 92, 100, 103, 112, 119, 124, 127, 128, 136, 144, 151, 164, 167, 175, 184, 188, 191, 196, 199, 200, 207, 223, 224, 239, 248, 252, 256, 263, 271, 272, 279, 284, 287, 288, 292, 311, 316, 324, 328
Offset: 1

Views

Author

Colin Barker, Feb 10 2014

Keywords

Comments

Nonnegative numbers of the form 8x^2 - y^2. - Jon E. Schoenfield, Jun 03 2022

Examples

			4 is in the sequence because x^2 - 6xy + y^2 + 4 = 0 has integer solutions, for example (x, y) = (1, 5).
		

Crossrefs

Cf. A001653 (k = 4), A006452 (k = 7), A001541 (k = 8), A075870 (k = 16), A156066 (k = 23), A217975 (k = 28), A003499 (k = 32), A075841 (k = 36), A077443 (k = 56).
For primes see A007522 and A141175.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

A101796 Primes of the form 8*k-1 such that 4*k-1, 16*k-1 and 32*k-1 are also primes.

Original entry on oeis.org

359, 719, 5399, 7079, 24239, 34319, 54959, 107279, 115679, 126839, 142799, 149399, 164999, 175079, 202799, 214559, 215399, 225839, 244199, 245639, 253679, 254279, 266999, 278879, 333479, 335519, 459479, 507359, 508559
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 359 is a term.
		

Crossrefs

Subsequence of A007522 and A101792.
Subsequence: A101996.

Programs

  • Mathematica
    8 * Select[Range[10^5], And @@ PrimeQ[2^Range[2, 5]*# - 1] &] - 1 (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = if(k % 8 == 7, my(m = k\8 + 1); isprime(4*m-1) && isprime(8*m-1) && isprime(16*m-1) && isprime(32*m-1), 0); \\ Amiram Eldar, May 13 2024

Formula

a(n) = 8*A101794(n) - 1 = 2*A101795(n) + 1. - Amiram Eldar, May 13 2024

A167859 a(n) = 4^n * Sum_{k=0..n} binomial(2*k, k)^2 / 4^k.

Original entry on oeis.org

1, 8, 68, 672, 7588, 93856, 1229200, 16695424, 232418596, 3293578784, 47309094672, 686870685312, 10059942413584, 148412250014336, 2202990595617344, 32873407393419776, 492791264816231204
Offset: 0

Views

Author

Alexander Adamchuk, Nov 13 2009

Keywords

Comments

Every a(n) from a((p-1)/2) to a(p-1) is divisible by prime p for p = {7, 47, 191, 383, 439, 1151, 1399, 2351, 2879, 3119, 3511, 3559, ...} = A167860, apparently a subset of primes of the form 8n+7 (A007522).
7^3 divides a(13) and 7^2 divides a(10)-a(13).
Every a(n) from a(kp-1 - (p-1)/2) to a(kp-1) is divisible by prime p from A167860.
Every a(n) from a((p^2-1)/2) to a(p^2-1) is divisible by prime p from A167860. For p=7 every a(n) from a((p^3-1)/2) to a(p^3-1) and from a((p^4-1)/2) to a(p^4-1)is divisible by p^2.

Crossrefs

Programs

  • Maple
    A167859 := proc(n)
        add( (binomial(2*k,k)/2^k)^2,k=0..n) ;
        4^n*% ;
    end proc:
    seq(A167859(n),n=0..20) ; # R. J. Mathar, Sep 21 2016
  • Mathematica
    Table[4^n*Sum[Binomial[2*k,k]^2/4^k,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    a(n) = 4^n*sum(k=0,n, binomial(2*k,k)^2/4^k) \\ Charles R Greathouse IV, Sep 21 2016

Formula

Recurrence: n^2*a(n) = 4*(5*n^2 - 4*n + 1)*a(n-1) - 16*(2*n - 1)^2*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(4*n+2)/(3*Pi*n). - Vaclav Kotesovec, Oct 20 2012
G.f.: 2*EllipticK(4*sqrt(x))/(Pi*(1-4*x)), where EllipticK is the complete elliptic integral of the first kind, using the Gradshteyn and Ryzhik convention, also used by Maple. In the convention of Abramowitz and Stegun, used by Mathematica, this would be written as 2*K(16*x)/(Pi*(1-4*x)). - Robert Israel, Sep 21 2016

Extensions

More terms from Sean A. Irvine, Apr 14 2010
Further terms from Jon E. Schoenfield, May 09 2010

A023231 Primes p such that 8*p + 7 is also prime.

Original entry on oeis.org

2, 3, 5, 23, 29, 47, 53, 59, 89, 107, 113, 137, 179, 197, 227, 233, 257, 263, 293, 317, 359, 389, 419, 509, 557, 587, 593, 599, 617, 653, 659, 683, 839, 857, 863, 887, 947, 977, 1013, 1097, 1103, 1163, 1193, 1217, 1223, 1229, 1259, 1277, 1283, 1307, 1319, 1409
Offset: 1

Views

Author

Keywords

Examples

			For p = 3, 8*p + 7 = 31;
for p = 179, 8*p + 7 = 1439.
		

Crossrefs

Programs

  • Magma
    [n: n in PrimesUpTo(1500) | IsPrime(8*n+7)]; // Vincenzo Librandi, Nov 20 2010
  • Maple
    a := proc (n) if isprime(n) = true and isprime(8*n+7) = true then n else end if end proc: seq(a(n), n = 1 .. 1500); # Emeric Deutsch, Dec 30 2008
  • Mathematica
    Select[Prime@Range@500, PrimeQ[8 # + 7] &] (* Vincenzo Librandi, May 19 2014 *)

Extensions

Edited by N. J. A. Sloane, Mar 11 2009 at the suggestion of R. J. Mathar
Previous Showing 31-40 of 83 results. Next