cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 103 results. Next

A269467 T(n,k)=Number of length-n 0..k arrays with no repeated value equal to the previous repeated value.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 10, 6, 25, 60, 66, 14, 7, 36, 120, 228, 174, 22, 8, 49, 210, 580, 852, 462, 30, 9, 64, 336, 1230, 2780, 3180, 1206, 46, 10, 81, 504, 2310, 7170, 13300, 11796, 3150, 62, 11, 100, 720, 3976, 15834, 41730, 63420, 43644, 8166, 94, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
.10....66....228.....580.....1230......2310......3976.......6408.......9810
.14...174....852....2780.....7170.....15834.....31304......56952......97110
.22...462...3180...13300....41730....108402....246232.....505800.....960750
.30..1206..11796...63420...242370....741090...1934856....4488696....9499590
.46..3150..43644..301780..1405530...5060706..15190840...39808584...93880710
.62..8166.160980.1433180..8139570..34523202.119174216..352838520..927352710
.94.21150.592572.6795700.47082330.235304034.934305400.3125681352.9156504150
The conjectures regarding the recursions for column k are correct (see links) - Sela Fried, Oct 29 2024.

Examples

			Some solutions for n=6 k=4
..2. .0. .3. .1. .1. .1. .2. .0. .1. .0. .3. .0. .3. .2. .4. .1
..4. .3. .1. .1. .2. .0. .0. .2. .0. .2. .3. .1. .4. .0. .3. .4
..3. .2. .0. .0. .0. .0. .2. .2. .1. .0. .4. .2. .4. .0. .4. .3
..3. .0. .4. .2. .1. .1. .2. .1. .3. .4. .1. .4. .2. .4. .4. .1
..1. .3. .4. .4. .0. .4. .4. .3. .4. .1. .4. .1. .2. .2. .0. .0
..0. .1. .3. .3. .4. .3. .2. .4. .1. .3. .2. .2. .1. .4. .1. .2
		

Crossrefs

Column 1 is A027383.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +2*a(n-2) -8*a(n-3)
k=3: a(n) = 5*a(n-1) -18*a(n-3)
k=4: a(n) = 7*a(n-1) -4*a(n-2) -32*a(n-3)
k=5: a(n) = 9*a(n-1) -10*a(n-2) -50*a(n-3)
k=6: a(n) = 11*a(n-1) -18*a(n-2) -72*a(n-3)
k=7: a(n) = 13*a(n-1) -28*a(n-2) -98*a(n-3)
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 4*n^2 + n
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + 2*n^2 - n
n=6: a(n) = n^6 + 6*n^5 + 11*n^4 + 4*n^3 - n^2 + n
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 + 8*n^4 - n^3 - n

A269537 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than one.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 10, 6, 25, 60, 64, 14, 7, 36, 120, 222, 164, 22, 8, 49, 210, 568, 804, 418, 30, 9, 64, 336, 1210, 2648, 2878, 1048, 46, 10, 81, 504, 2280, 6890, 12214, 10192, 2614, 62, 11, 100, 720, 3934, 15324, 38878, 55836, 35812, 6468, 94, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
.10....64....222.....568.....1210......2280......3934.......6352.......9738
.14...164....804....2648.....6890.....15324.....30464......55664......95238
.22...418...2878...12214....38878....102202....234358.....485038.....926854
.30..1048..10192...55836...217714....677200...1792788....4205812....8981446
.46..2614..35812..253418..1211476...4462414..13648124...36313762...86704348
.62..6468.125012.1143256..6705102..29265308.103462888..312366672..834223586
.94.15942.434110.5131592.36939610.191134204.781425950.2678039200.8002547722

Examples

			Some solutions for n=6 k=4
..2. .4. .4. .0. .3. .0. .0. .3. .1. .2. .2. .3. .2. .1. .4. .0
..4. .3. .1. .3. .2. .2. .3. .0. .2. .0. .1. .0. .1. .3. .0. .2
..3. .2. .0. .1. .1. .4. .1. .0. .3. .3. .3. .1. .3. .0. .4. .2
..2. .1. .1. .2. .1. .0. .3. .2. .3. .4. .1. .0. .4. .2. .1. .4
..0. .3. .1. .2. .0. .1. .1. .4. .2. .1. .1. .1. .1. .4. .1. .0
..2. .1. .2. .4. .2. .1. .2. .0. .0. .2. .2. .2. .3. .2. .4. .4
		

Crossrefs

Column 1 is A027383.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 4*a(n-1) -a(n-2) -10*a(n-3) +6*a(n-4) +4*a(n-5)
k=3: a(n) = 7*a(n-1) -9*a(n-2) -23*a(n-3) +31*a(n-4) +33*a(n-5)
k=4: a(n) = 14*a(n-1) -65*a(n-2) +80*a(n-3) +163*a(n-4) -280*a(n-5) -208*a(n-6)
k=5: [order 7]
k=6: [order 9]
k=7: [order 9]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 3*n^2 + 2*n
n=5: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 - 2*n
n=6: a(n) = n^6 + 6*n^5 + 5*n^4 + 12*n^3 - 6*n^2 + 6*n - 2
n=7: a(n) = n^7 + 7*n^6 + 6*n^5 + 20*n^4 - 12*n^3 + 22*n^2 - 18*n + 4

A269606 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by one or less.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 8, 6, 25, 60, 62, 10, 7, 36, 120, 222, 154, 12, 8, 49, 210, 572, 804, 376, 14, 9, 64, 336, 1220, 2692, 2878, 902, 16, 10, 81, 504, 2298, 7030, 12570, 10192, 2142, 18, 11, 100, 720, 3962, 15630, 40288, 58280, 35812, 5040, 20, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
..8....62....222.....572.....1220......2298......3962.......6392.......9792
.10...154....804....2692.....7030.....15630.....31024......56584......96642
.12...376...2878...12570....40288....105892....242226.....499798.....952180
.14...902..10192...58280...229754....714874...1886252....4405772....9366790
.16..2142..35812..268704..1304934...4811578..14654952...38768412...92013754
.18..5040.125012.1233046..7385898..32300252.113629480..340600002..902743646
.20.11786.434110.5636046.41679780.216337084.879470154.2988094770.8846649136

Examples

			Some solutions for n=6 k=4
..1. .0. .3. .0. .3. .2. .1. .1. .0. .3. .2. .3. .2. .1. .1. .2
..3. .2. .2. .2. .0. .4. .2. .2. .3. .4. .0. .0. .0. .4. .1. .2
..0. .0. .3. .4. .3. .2. .3. .3. .1. .4. .4. .3. .3. .3. .2. .3
..4. .1. .0. .3. .1. .0. .3. .1. .0. .3. .1. .1. .3. .0. .1. .1
..3. .3. .2. .4. .3. .4. .0. .0. .1. .4. .2. .3. .2. .3. .2. .0
..1. .3. .1. .3. .0. .4. .1. .3. .1. .0. .3. .3. .0. .3. .0. .0
		

Crossrefs

Column 1 is A004275(n+1).
Column 3 is A269532.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 5*a(n-1) -5*a(n-2) -8*a(n-3) +12*a(n-4)
k=3: a(n) = 7*a(n-1) -9*a(n-2) -23*a(n-3) +31*a(n-4) +33*a(n-5)
k=4: [order 7]
k=5: [order 7]
k=6: [order 9]
k=7: [order 9]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 4*n^2 - n
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 - 4*n^2 + n
n=6: a(n) = n^6 + 6*n^5 + 11*n^4 - 8*n^3 + n^2 + 3*n - 2
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 - 12*n^4 - 5*n^3 + 18*n^2 - 15*n + 4

A269640 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 9, 6, 25, 60, 63, 12, 7, 36, 120, 221, 159, 16, 8, 49, 210, 567, 796, 396, 20, 9, 64, 336, 1209, 2637, 2828, 969, 25, 10, 81, 504, 2279, 6876, 12125, 9928, 2349, 30, 11, 100, 720, 3933, 15307, 38738, 55225, 34537, 5640, 36, 12, 121, 990
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
..9....63....221.....567.....1209......2279......3933.......6351.......9737
.12...159....796....2637.....6876.....15307.....30444......55641......95212
.16...396...2828...12125....38738....101999....234080.....484673.....926390
.20...969...9928...55225...216528....675151...1789528....4200933....8974480
.25..2349..34537..249600..1202353...4443665..13613507...36254755...86609789
.30..5640.119236.1120868..6639294..29104549.103118640..311698647..833022466
.36.13455.409098.5006144.36486190.189818232.778158768.2670823421.7987993868

Examples

			Some solutions for n=6 k=4
..4. .2. .3. .4. .3. .0. .2. .4. .0. .3. .1. .0. .4. .1. .0. .3
..0. .3. .1. .2. .1. .0. .1. .3. .0. .4. .2. .2. .1. .3. .3. .2
..3. .1. .2. .4. .4. .3. .4. .0. .1. .3. .0. .1. .0. .2. .0. .4
..2. .4. .0. .3. .2. .1. .1. .2. .2. .0. .1. .0. .3. .0. .3. .0
..1. .1. .2. .3. .2. .2. .3. .0. .4. .3. .0. .3. .2. .4. .1. .1
..0. .4. .3. .0. .4. .1. .3. .2. .2. .0. .2. .0. .4. .1. .2. .1
		

Crossrefs

Column 1 is A002620(n+2).
Column 2 is A268938.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4)
k=2: a(n) = 3*a(n-1) +a(n-2) -6*a(n-3)
k=3: a(n) = 9*a(n-1) -21*a(n-2) -19*a(n-3) +93*a(n-4) +27*a(n-5) -133*a(n-6) -87*a(n-7)
k=4: [order 7]
k=5: [order 13]
k=6: [order 14]
k=7: [order 16]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 3*n^2 + 2*n - 1
n=5: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 - 5*n + 1
n=6: a(n) = n^6 + 6*n^5 + 5*n^4 + 12*n^3 - 12*n^2 + 9*n - 7 for n>2
n=7: a(n) = n^7 + 7*n^6 + 6*n^5 + 20*n^4 - 22*n^3 + 28*n^2 - 37*n + 13 for n>2

A269678 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than plus or minus one modulo k+1.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 10, 6, 25, 60, 66, 14, 7, 36, 120, 224, 174, 22, 8, 49, 210, 570, 820, 462, 30, 9, 64, 336, 1212, 2670, 2976, 1206, 46, 10, 81, 504, 2282, 6918, 12390, 10700, 3150, 62, 11, 100, 720, 3936, 15358, 39156, 57030, 38224, 8166, 94, 12, 121
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
.10....66....224.....570.....1212......2282......3936.......6354.......9740
.14...174....820....2670.....6918.....15358.....30504......55710......95290
.22...462...2976...12390....39156....102606....234912.....485766.....927780
.30..1206..10700...57030...220050....681254...1799256....4215510....8995310
.46..3150..38224..260790..1229292...4499278..13716480...36430614...86891980
.62..8166.135780.1185990..6832518..29579382.104139336..313684470..836599530
.94.21150.480176.5368470.37810116.193688894.787814400.2692218006.8031245540

Examples

			Some solutions for n=6 k=4
..0. .1. .4. .0. .2. .4. .0. .4. .4. .4. .4. .4. .3. .0. .4. .4
..2. .3. .2. .3. .3. .1. .0. .2. .4. .2. .0. .3. .3. .3. .0. .2
..0. .2. .4. .2. .4. .3. .4. .1. .0. .3. .3. .2. .0. .0. .3. .3
..3. .3. .1. .1. .1. .4. .1. .2. .2. .3. .2. .1. .4. .4. .3. .4
..0. .3. .3. .0. .4. .2. .0. .3. .0. .2. .1. .0. .3. .4. .4. .1
..1. .2. .4. .2. .4. .2. .4. .1. .4. .0. .2. .1. .4. .3. .2. .3
		

Crossrefs

Column 1 is A027383.
Column 2 is A269461.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +2*a(n-2) -8*a(n-3)
k=3: a(n) = 5*a(n-1) -a(n-2) -15*a(n-3)
k=4: a(n) = 7*a(n-1) -6*a(n-2) -24*a(n-3)
k=5: a(n) = 9*a(n-1) -13*a(n-2) -35*a(n-3)
k=6: a(n) = 11*a(n-1) -22*a(n-2) -48*a(n-3)
k=7: a(n) = 13*a(n-1) -33*a(n-2) -63*a(n-3)
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 3*n^2 + 2*n + 2 for n>1
n=5: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 + 4*n - 2 for n>1
n=6: a(n) = n^6 + 6*n^5 + 5*n^4 + 12*n^3 + 6*n^2 + 6 for n>1
n=7: a(n) = n^7 + 7*n^6 + 6*n^5 + 20*n^4 + 8*n^3 + 10*n^2 + 12*n - 10 for n>1

A135503 a(n) = n*(n^2 - 1)/2.

Original entry on oeis.org

0, 0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, 1092, 1365, 1680, 2040, 2448, 2907, 3420, 3990, 4620, 5313, 6072, 6900, 7800, 8775, 9828, 10962, 12180, 13485, 14880, 16368, 17952, 19635, 21420, 23310, 25308, 27417, 29640, 31980, 34440
Offset: 0

Views

Author

Cino Hilliard, Feb 09 2008

Keywords

Comments

Previous name was: Integer values of sqrt(b) solving sqrt(d) + sqrt(b) = sqrt(c) with d^2 + b = c.
Squaring the first equation and setting the result equal to the second, we need d + b + 2*sqrt(d*b) = d^2+b -> d + 2*sqrt(d*b) = d^2 -> d^2 - d = 2*sqrt(d*b)
-> d^2*(d-1)^2 = 4*d*b -> b = d*(d-1)^2/4 -> sqrt(b) = (d-1)*sqrt(d)/2. Setting d = (n+1)^2 yields sqrt(b) = A027480(n).
This is the case k = 2 for FLTR, Fermat's Last Theorem with rational exponents 1/k: Consider x + y = x + y. Then (x^k)^(1/k) + (y^k)^(1/k) = ((x+y)^k)^(1/k).
For k > 2, there are infinitely many solutions to d^(1/k) + b^(1/k) = c^(1/k). E.g., 8^(1/3) + 27^(1/3) = 125^(1/3) at k = 3. However, in conjunction with d^2 + b = c, I could not find any nontrivial solutions.
A shifted version of A027480. - R. J. Mathar, Apr 07 2009
For n > 2, a(n) is the maximum value of the magic constant in a perimeter-magic n-gon of order n (see A342758). - Stefano Spezia, Mar 21 2021
a(n) is equal to the total number of P_3 edge-disjoint subgraphs of the complete graph on n vertices. - Samuel J. Bevins, May 09 2023

Examples

			For d = 9, b = 144, c = 225, 9^(1/2) + 144^(1/2) = 225^(1/2) and 9^2 + 144 = 225. So b^(1/2) = 12 is the 4th entry in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Array[# (#^2 - 1)/2 &, 42, 0] (* Michael De Vlieger, Feb 20 2018 *)
  • PARI
    flt2(n,p) = { local(a,b); for(a=0,n, b = (a^3-a)/2; print1(b", ") ) }

Formula

a(n) = 3*A000292(n-1).
From R. J. Mathar Feb 20 2008: (Start)
O.g.f.: 3*x^2/(-1+x)^4.
a(n) = n*(n^2 - 1)/2 = A007531(n+1)/2. (End)
G.f.: 3*x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + (k+1)/(k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
a(n) = A006003(n+1) - A000326(n+1). - J. M. Bergot, Dec 04 2014
E.g.f.: (1/2)* x^2 *(3 + x)*exp(x). - G. C. Greubel, Oct 15 2016
From Miquel Cerda, Dec 25 2016: (Start)
a(n) = A000578(n) - A006003(n).
a(n) = A004188(n) - A000578(n).
a(n) = A007588(n) - A004188(n). (End)
a(n) = A002411(n) - A000217(n). - Justin Gaetano, Feb 20 2018
From Amiram Eldar, Jan 09 2021: (Start)
Sum_{n>=2} 1/a(n) = 1/2.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2) - 5/2. (End)

Extensions

Edited by R. J. Mathar, Apr 21 2009
New name using R. J. Mathar's formula, Joerg Arndt, Dec 05 2014

A284823 Array read by antidiagonals: T(n,k) = number of primitive (aperiodic) palindromes of length n using a maximum of k different symbols (n >= 1, k >= 1).

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 4, 0, 2, 0, 5, 0, 6, 2, 0, 6, 0, 12, 6, 6, 0, 7, 0, 20, 12, 24, 4, 0, 8, 0, 30, 20, 60, 18, 14, 0, 9, 0, 42, 30, 120, 48, 78, 12, 0, 10, 0, 56, 42, 210, 100, 252, 72, 28, 0, 11, 0, 72, 56, 336, 180, 620, 240, 234, 24, 0, 12, 0, 90, 72, 504, 294, 1290, 600, 1008, 216, 62
Offset: 1

Views

Author

Andrew Howroyd, Apr 03 2017

Keywords

Examples

			Table starts:
1  2   3    4    5    6     7     8     9    10 ...
0  0   0    0    0    0     0     0     0     0 ...
0  2   6   12   20   30    42    56    72    90 ...
0  2   6   12   20   30    42    56    72    90 ...
0  6  24   60  120  210   336   504   720   990 ...
0  4  18   48  100  180   294   448   648   900 ...
0 14  78  252  620 1290  2394  4088  6552  9990 ...
0 12  72  240  600 1260  2352  4032  6480  9900 ...
0 28 234 1008 3100 7740 16758 32704 58968 99900 ...
0 24 216  960 3000 7560 16464 32256 58320 99000 ...
...
Row 4 includes palindromes of the form abba but excludes those of the form aaaa, so T(4,k) is k*(k-1).
Row 6 includes palindromes of the forms aabbaa, abbbba, abccba but excludes those of the forms aaaaaa, abaaba, so T(6,k) is 2*k*(k-1) + k*(k-1)*(k-2).
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are A056458, A056459, A056460, A056461, A056462.
Rows 5-10 are A007531(k+1), A045991, A058895, A047928(k-1), A135497, A133754.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, MoebiusMu[n/#]*k^Ceiling[#/2]&]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 05 2017 *)
  • PARI
    a(n,k) = sumdiv(n, d, moebius(n/d) * k^(ceil(d/2)));
    for(n=1, 10, for(k=1, 10, print1( a(n,k),", ");); print();)

Formula

T(n,k) = Sum_{d | n} mu(n/d) * k^(ceiling(d/2)).

A331431 Triangle read by rows: T(n,k) = (-1)^(n+k)*(n+k+1)*binomial(n,k)*binomial(n+k,k) for n >= k >= 0.

Original entry on oeis.org

1, -2, 6, 3, -24, 30, -4, 60, -180, 140, 5, -120, 630, -1120, 630, -6, 210, -1680, 5040, -6300, 2772, 7, -336, 3780, -16800, 34650, -33264, 12012, -8, 504, -7560, 46200, -138600, 216216, -168168, 51480, 9, -720, 13860, -110880, 450450, -1009008, 1261260, -823680, 218790
Offset: 0

Views

Author

N. J. A. Sloane, Jan 17 2020

Keywords

Comments

Tables I, III, IV on pages 92 and 93 of Ser have integer entries and are A331430, A331431 (the present sequence), and A331432.
Given the system of equations 1 = Sum_{j=0..n} H(i, j) * x(j) for i = 2..n+2 where H(i,j) = 1/(i+j-1) for 1 <= i,j <= n is the n X n Hilbert matrix, then the solutions are x(j) = T(n, j). - Michael Somos, Mar 20 2020 [Corrected by Petros Hadjicostas, Jul 09 2020]

Examples

			Triangle begins:
   1;
  -2,    6;
   3,  -24,    30;
  -4,   60,  -180,     140;
   5, -120,   630,   -1120,     630;
  -6,  210, -1680,    5040,   -6300,     2772;
   7, -336,  3780,  -16800,   34650,   -33264,   12012;
  -8,  504, -7560,   46200, -138600,   216216, -168168,   51480;
   9, -720, 13860, -110880,  450450, -1009008, 1261260, -823680, 218790;
  ...
		

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93. See Table III.

Crossrefs

Columns 1 is A331433 or equally A007531, column 2 is A331434 or equally A054559; the last three diagonals are A002738, A002736, A002457.
Cf. A000290 (row sums), A002457,, A100071, A108666 (alternating row sums), A109188 (diagonal sums), A331322, A331323, A331430, A331432.

Programs

  • Magma
    [(-1)^(n+k)*(k+1)*(2*k+1)*Binomial(n+k+1,n-k)*Catalan(k): k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 22 2022
    
  • Maple
    gf := k -> (1+x)^(-2*(k+1)): ser := k -> series(gf(k), x, 32):
    T := (n, k) -> ((2*k+1)!/(k!)^2)*coeff(ser(k), x, n-k):
    seq(seq(T(n,k), k=0..n),n=0..7); # Peter Luschny, Jan 18 2020
    S:=(n,k)->(-1)^(n+k)*(n+k+1)!/((k!)^2*(n-k)!);
    rho:=n->[seq(S(n,k),k=0..n)];
    for n from 0 to 14 do lprint(rho(n)); od: # N. J. A. Sloane, Jan 18 2020
  • Mathematica
    Table[(-1)^(n+k)*(n+k+1)*Binomial[2*k,k]*Binomial[n+k,n-k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 22 2022 *)
  • Sage
    flatten([[(-1)^(n+k)*(2*k+1)*binomial(2*k,k)*binomial(n+k+1,n-k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Mar 22 2022

Formula

T(n, 0) = (-1)^n*A000027(n+1).
T(n, 1) = A331433(n-1) = (-1)^(n+1)*A007531(n+2).
T(n, 2) = A331434(n-2) = (-1)^n*A054559(n+3).
T(n, n-2) = A002738(n-2).
T(n, n-1) = (-1)*A002736(n).
T(n, n) = A002457(n).
T(2*n, n) = (-1)^n*(3*n+1)!/(n!)^3 = (-1)^n*A331322(n).
Sum_{k=0..n} T(n, k) = A000290(n+1) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A108666(n+1) (alternating row sums).
Sum_{k=0..n} T(n-k, k) = (-1)^n*A109188(n+1) (diagonal sums).
2^n*Sum_{k=0..n} T(n, k)/2^k = (-1)^floor(n/2)*A100071(n+1) (positive half sums).
(-2)^n*Sum_{k=0..n} T(n, k)/(-2)^k = A331323(n) (negative half sums).
T(n, k) = ((2*k+1)!/(k!)^2)*[x^(n-k)] (1+x)^(-2*(k+1)). - Georg Fischer and Peter Luschny, Jan 18 2020
T(n,k) = (-1)^(n+k)*(n+k+1)!/((k!)^2*(n-k)!), for n >= k >= 0. - N. J. A. Sloane, Jan 18 2020
From Petros Hadjicostas, Jul 09 2020: (Start)
Michael Somos's formulas above can be restated as
Sum_{k=0..n} T(n,k)/(i+k) = 1 for i = 1..n+1.
These are special cases of the following formula that is alluded to (in some way) in Ser's book:
1 - Sum_{k=0..n} T(n,k)/(x + k) = (x-1)*...*(x-(n + 1))/(x*(x+1)*...*(x+n)).
Because T(n,k) = (-1)^(n+1)*(n + k + 1)*A331430(n,k) and Sum_{k=0..n} A331430(n,k) = (-1)^(n+1), one may derive this formula from Ser's second formula stated in A331430. (End)
T(2*n+1, n) = (-2)*(-27)^n*Pochhammer(4/3, n)*Pochhammer(5/3, n)/(n!*(n+1)!). - G. C. Greubel, Mar 22 2022

Extensions

Several typos in the data corrected by Georg Fischer and Peter Luschny, Jan 18 2020
Definition changed by N. J. A. Sloane, Jan 18 2020

A053625 Product of 6 consecutive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 5040, 20160, 60480, 151200, 332640, 665280, 1235520, 2162160, 3603600, 5765760, 8910720, 13366080, 19535040, 27907200, 39070080, 53721360, 72681840, 96909120, 127512000, 165765600, 213127200, 271252800, 342014400, 427518000, 530122320
Offset: 0

Views

Author

Henry Bottomley, Mar 20 2000

Keywords

Crossrefs

Programs

  • GAP
    F:=Factorial;; Concatenation([0,0,0,0,0,0], List([6..30], n-> F(n)/F(n-5) )); # G. C. Greubel, Aug 27 2019
  • Magma
    I:=[0,0,0,0,0,0,720]; [n le 7 select I[n] else 7*Self(n-1) -21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6) +Self(n-7): n in [1..30]]; // Vincenzo Librandi, Apr 28 2012
    
  • Maple
    seq(combinat[numbperm](n, 6), n=0..31); # Zerinvary Lajos, Apr 26 2007
  • Mathematica
    CoefficientList[Series[720*x^6/(1-x)^7,{x,0,30}],x] (* Vincenzo Librandi, Apr 28 2012 *)
    Times@@@Partition[Range[-5,30],6,1] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,0,0,720},30] (* Harvey P. Dale, Nov 13 2015 *)
    Pochhammer[Range[30]-6, 6] (* G. C. Greubel, Aug 27 2019 *)
  • PARI
    a(n)=factorback([n-5..n]) \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [rising_factorial(n-5,6) for n in (0..30)] # G. C. Greubel, Aug 27 2019
    

Formula

a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5) = n!/(n-6)! = A052787(n)*(n-6) = a(n-1)*n/(n-6).
E.g.f.: x^6*exp(x).
a(n) = 720 * A000579(n). - Zerinvary Lajos, Apr 26 2007
For n > 5: a(n) = A173333(n, n-6). - Reinhard Zumkeller, Feb 19 2010
G.f.: 720*x^6/(1-x)^7. - Colin Barker, Mar 27 2012
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Vincenzo Librandi, Apr 28 2012
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=6} 1/a(n) = 1/600.
Sum_{n>=6} (-1)^n/a(n) = 4*log(2)/15 - 661/3600. (End)

A128964 a(n) = (n^3-n)*6^n.

Original entry on oeis.org

0, 216, 5184, 77760, 933120, 9797760, 94058496, 846526464, 7255941120, 59861514240, 478892113920, 3735358488576, 28524555730944, 213934167982080, 1579821548175360, 11510128422420480, 82872924641427456, 590469588070170624, 4168020621671792640, 29176144351702548480
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3-n)*6^n: n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
    
  • Magma
    I:=[0, 216, 5184, 77760]; [n le 4 select I[n] else 24*Self(n-1) -216*Self(n-2) +864*Self(n-3) -1296*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
  • Mathematica
    CoefficientList[Series[216 x/(1 - 6 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 11 2013 *)

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 216*x^2/(1-6*x)^4.
a(n) = 216*A081144(n+1). (End)
a(n) = 24*a(n-1) - 216*a(n-2) + 864*a(n-3) - 1296*a(n-4). - Vincenzo Librandi, Feb 11 2013
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=2} 1/a(n) = 25*log(6/5)/12 - 3/8.
Sum_{n>=2} (-1)^n/a(n) = 49*log(7/6)/12 - 5/8. (End)
a(n) = A007531(n+1)*A000400(n). - Amiram Eldar, Oct 02 2022

Extensions

Corrected offset. - Mohammad K. Azarian, Nov 20 2008
Previous Showing 31-40 of 103 results. Next