A269467 T(n,k)=Number of length-n 0..k arrays with no repeated value equal to the previous repeated value.
2, 3, 4, 4, 9, 6, 5, 16, 24, 10, 6, 25, 60, 66, 14, 7, 36, 120, 228, 174, 22, 8, 49, 210, 580, 852, 462, 30, 9, 64, 336, 1230, 2780, 3180, 1206, 46, 10, 81, 504, 2310, 7170, 13300, 11796, 3150, 62, 11, 100, 720, 3976, 15834, 41730, 63420, 43644, 8166, 94, 12, 121
Offset: 1
Examples
Some solutions for n=6 k=4 ..2. .0. .3. .1. .1. .1. .2. .0. .1. .0. .3. .0. .3. .2. .4. .1 ..4. .3. .1. .1. .2. .0. .0. .2. .0. .2. .3. .1. .4. .0. .3. .4 ..3. .2. .0. .0. .0. .0. .2. .2. .1. .0. .4. .2. .4. .0. .4. .3 ..3. .0. .4. .2. .1. .1. .2. .1. .3. .4. .1. .4. .2. .4. .4. .1 ..1. .3. .4. .4. .0. .4. .4. .3. .4. .1. .4. .1. .2. .2. .0. .0 ..0. .1. .3. .3. .4. .3. .2. .4. .1. .3. .2. .2. .1. .4. .1. .2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
- Sela Fried, Proofs of some Conjectures from the OEIS, arXiv:2410.07237 [math.NT], 2024.
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +2*a(n-2) -8*a(n-3)
k=3: a(n) = 5*a(n-1) -18*a(n-3)
k=4: a(n) = 7*a(n-1) -4*a(n-2) -32*a(n-3)
k=5: a(n) = 9*a(n-1) -10*a(n-2) -50*a(n-3)
k=6: a(n) = 11*a(n-1) -18*a(n-2) -72*a(n-3)
k=7: a(n) = 13*a(n-1) -28*a(n-2) -98*a(n-3)
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 4*n^2 + n
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + 2*n^2 - n
n=6: a(n) = n^6 + 6*n^5 + 11*n^4 + 4*n^3 - n^2 + n
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 + 8*n^4 - n^3 - n
Comments