cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 63 results. Next

A114799 Septuple factorial, 7-factorial, n!7, n!!!!!!!, a(n) = n*a(n-7) if n > 1, else 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 18, 30, 44, 60, 78, 98, 120, 288, 510, 792, 1140, 1560, 2058, 2640, 6624, 12240, 19800, 29640, 42120, 57624, 76560, 198720, 379440, 633600, 978120, 1432080, 2016840, 2756160, 7352640, 14418720, 24710400, 39124800
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Comments

Many of the terms yield multifactorial primes a(n) + 1, e.g.: a(2) + 1 = 3, a(4) + 1 = 5, a(6) + 1 = 7, a(9) + 1 = 19, a(10) + 1 = 31, a(12) + 1 = 61, a(13) + 1 = 79, a(24) + 1 = 12241, a(25) + 1 = 19801, a(26) + 1 = 29641, a(29) + 1 = 76561, a(31) + 1 = 379441, a(35) + 1 = 2016841, a(36) + 1 = 2756161, ...
Equivalently, product of all positive integers <= n congruent to n (mod 7). - M. F. Hasler, Feb 23 2018

Examples

			a(40) = 40 * a(40-7) = 40 * a(33) = 40 * (33*a(26)) = 40 * 33 * (26*a(19)) = 40 * 33 * 26 * (19*a(12)) = 40 * 33 * 26 * 19 * (12*a(5)) = 40 * 33 * 26 * 19 * 12 5 = 39124800.
		

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-7);
        fi;
      end;
    List([0..40], n-> a(n) ); # G. C. Greubel, Aug 20 2019
  • Magma
    b:= func< n | (n lt 8) select n else n*Self(n-7) >;
    [1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    A114799 := proc(n)
        option remember;
        if n < 1 then
            1;
        else
            n*procname(n-7) ;
        end if;
    end proc:
    seq(A114799(n),n=0..40) ; # R. J. Mathar, Jun 23 2014
    A114799 := n -> product(n-7*k,k=0..(n-1)/7); # M. F. Hasler, Feb 23 2018
  • Mathematica
    a[n_]:= If[n<1, 1, n*a[n-7]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    A114799(n,k=7)=prod(j=0,(n-1)\k,n-j*k) \\ M. F. Hasler, Feb 23 2018
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-7)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 20 2019
    

Formula

a(n) = 1 for n <= 1, else a(n) = n*a(n-7).
Sum_{n>=0} 1/a(n) = A288094. - Amiram Eldar, Nov 10 2020

Extensions

Edited by M. F. Hasler, Feb 23 2018

A114806 Nonuple factorial, 9-factorial, n!9, n!!!!!!!!!.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 22, 36, 52, 70, 90, 112, 136, 162, 190, 440, 756, 1144, 1610, 2160, 2800, 3536, 4374, 5320, 12760, 22680, 35464, 51520, 71280, 95200, 123760, 157464, 196840, 484880, 884520, 1418560, 2112320, 2993760, 4093600
Offset: 0

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Examples

			a(10) = 10 * a(10-9) = 10 * a(1) = 10 * 1 = 10.
a(20) = 20 * a(20-9) = 20 * a(11) = 20 * (11*a(11-9)) = 20 * 11 * a(2) = 20 * 11 * 2 = 440.
a(30) = 30 * a(30-9) = 30 * a(21) = 30 * (21*a(21-9)) = 30 * 21 * a(12) = 30 * 21 * (12*a(12-9)) = 30 * 21 * 12 * 3 = 22680.
		

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-9);
        fi;
      end;
    List([0..50], n-> a(n) ); # G. C. Greubel, Aug 21 2019
  • Magma
    b:=func< n | n le 9 select n else n*Self(n-9) >;
    [1] cat [b(n): n in [1..50]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    f:= proc(n) option remember;
    n*procname(n-9)
    end proc:
    f(0):= 1: for n from 1 to 8 do f(n):= n od:
    map(f, [$0..100]); # Robert Israel, Jun 21 2019
  • Mathematica
    NFactorialM[n_, m_] := Block[{k = n, p = Max[1, n]}, While[k > m, k -= m; p *= k]; p]; Array[ NFactorialM[#, 9] &, 44, 0] (* Robert G. Wilson v, May 10 2011 *)
    a[n_]:= a[n]= If[n<1, 1, n*a[n-9]]; Table[a[n], {n,0,50}] (* G. C. Greubel, Aug 21 2019 *)
    Table[Times@@Range[n,1,-9],{n,0,50}] (* Harvey P. Dale, Nov 13 2021 *)
  • PARI
    a(n)=if(n<1, 1, n*a(n-9));
    vector(50, n, n--; a(n) ) \\ G. C. Greubel, Aug 21 2019
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-9)
    [a(n) for n in (0..50)] # G. C. Greubel, Aug 21 2019
    

Formula

D-finite with recurrence: a(0) = 1, a(n) = n for 1 <= n <= 9, a(n) = n*a(n-9) for n >= 10.
From Robert Israel, Jun 21 2019: (Start)
a(9*m) = 9^m*m!.
a(9*m+k) = 9^m*(9*m+k)*Gamma(m+k/9)/Gamma(k/9) for 1 <= k <= 8. (End)
Sum_{n>=0} 1/a(n) = A288096. - Amiram Eldar, Nov 10 2020

A085146 Numbers k such that k!!!! + 1 is prime.

Original entry on oeis.org

0, 1, 2, 4, 6, 18, 38, 56, 94, 118, 148, 286, 1358, 1480, 1514, 2680, 2846, 4078, 4288, 5612, 5680, 6440, 6586, 14614, 30972, 31690, 54406
Offset: 1

Views

Author

Hugo Pfoertner, Jun 25 2003

Keywords

Comments

The search for multifactorial primes started by Ray Ballinger is now continued by a team of volunteers on the website of Ken Davis (see link).

Crossrefs

Cf. A007662 (quadruple factorials), A085147.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008

A288091 Decimal expansion of m(4) = Sum_{n>=0} 1/n!!!!, the 4th reciprocal multifactorial constant.

Original entry on oeis.org

3, 4, 8, 5, 9, 4, 4, 9, 7, 7, 4, 5, 3, 5, 5, 7, 7, 4, 5, 2, 1, 8, 8, 0, 9, 0, 4, 4, 0, 4, 6, 4, 0, 4, 7, 9, 5, 0, 9, 2, 6, 8, 2, 3, 2, 0, 8, 8, 1, 9, 6, 9, 4, 0, 7, 6, 4, 7, 2, 4, 9, 9, 9, 8, 1, 3, 1, 6, 1, 3, 1, 7, 2, 2, 9, 0, 0, 5, 6, 6, 2, 9, 6, 4, 0, 2, 2, 1, 4, 4, 6, 9, 7, 5, 9, 8, 6, 0, 1, 8, 6, 8, 5, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			3.485944977453557745218809044046404795092682320881969407647249998...
		

Crossrefs

Cf. A007662 (n!!!!), A143280 (m(2)), A288055 (m(3)), this sequence (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (1/4)*Exp(1/4)*(4 + Sqrt(2)* Gamma(1/4, 1/4) + 2*Gamma(1/2, 1/4) + 2*Sqrt(2)*Gamma(3/4, 1/4)) // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[4] = (1/4)*E^(1/4)*(4 + Sqrt[2]*(Gamma[1/4] - Gamma[1/4, 1/4]) + 2*(Sqrt[Pi] - Gamma[1/2, 1/4]) + 2*Sqrt[2]*(Gamma[3/4] - Gamma[3/4, 1/4])); RealDigits[m[4], 10, 104][[1]]
  • PARI
    default(realprecision, 100); (1/4)*exp(1/4)*(4+sqrt(2)*(gamma(1/4) - incgam(1/4, 1/4))+2*(sqrt(Pi) -incgam(1/2, 1/4))+2*sqrt(2)*(gamma(3/4) - incgam(3/4, 1/4))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/4)*exp(1/4)*(4 + sqrt(2)*(gamma(1/4) - gamma_inc(1/4, 1/4)) + 2*(sqrt(pi) - gamma_inc(1/2, 1/4)) + 2*sqrt(2)*(gamma(3/4) - gamma_inc(3/4, 1/4))), digits=100) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A288327 Decuple factorial, 10-factorial, n!10, n!!!!!!!!!!.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 24, 39, 56, 75, 96, 119, 144, 171, 200, 231, 528, 897, 1344, 1875, 2496, 3213, 4032, 4959, 6000, 7161, 16896, 29601, 45696, 65625, 89856, 118881, 153216, 193401, 240000, 293601, 709632, 1272843, 2010624, 2953125, 4133376
Offset: 0

Views

Author

Robert Price, Jun 07 2017

Keywords

Examples

			a(13) = 13 * 3 * 1 = 39.
		

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-10);
        fi;
      end;
    List([0..50], n-> a(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    b:=func< n | n le 10 select n else n*Self(n-10) >;
    [1] cat [b(n): n in [1..50]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> `if`(n<1, 1, n*a(n-10)); seq(a(n), n=0..50); # G. C. Greubel, Aug 22 2019
  • Mathematica
    MultiFactorial[n_, k_]:=If[n<1, 1 ,n*MultiFactorial[n-k, k]];
    Table[MultiFactorial[i, 10], {i, 0, 100}]
    Table[Times@@Range[n,1,-10],{n,0,50}] (* Harvey P. Dale, Aug 11 2019 *)
  • PARI
    a(n)=if(n<1, 1, n*a(n-10));
    vector(40, n, n--; a(n) ) \\ G. C. Greubel, Aug 22 2019
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-10)
    [a(n) for n in (0..50)] # G. C. Greubel, Aug 22 2019
    

Formula

a(n)=1 for n < 1, otherwise a(n) = n*a(n-10).
Sum_{n>=0} 1/a(n) = A342033. - Amiram Eldar, May 23 2022

A129116 Multifactorial array: A(k,n) = k-tuple factorial of n, for positive n, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 3, 24, 1, 2, 3, 8, 120, 1, 2, 3, 4, 15, 720, 1, 2, 3, 4, 10, 48, 5040, 1, 2, 3, 4, 5, 18, 105, 40320, 1, 2, 3, 4, 5, 12, 28, 384, 362880, 1, 2, 3, 4, 5, 6, 21, 80, 945, 3628800, 1, 2, 3, 4, 5, 6, 14, 32, 162, 3840, 39916800, 1, 2, 3, 4, 5, 6, 7, 24, 45, 280, 10395, 479001600
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2007

Keywords

Comments

The term "Quintuple factorial numbers" is also used for the sequences A008546, A008548, A052562, A047055, A047056 which have a different definition. The definition given here is the one commonly used. This problem exists for the other rows as well. "n!2" = n!!, "n!3" = n!!!, "n!4" = n!!!!, etcetera. Main diagonal is A[n,n] = n!n = n.
Similar to A114423 (with rows and columns exchanged). - Georg Fischer, Nov 02 2021

Examples

			Table begins:
  k / A(k,n)
  1 | 1 2 6 24 120 720 5040 40320 362880 3628800 ... = A000142.
  2 | 1 2 3  8  15  48  105   384    945    3840 ... = A006882.
  3 | 1 2 3  4  10  18   28    80    162     280 ... = A007661.
  4 | 1 2 3  4   5  12   21    32     45     120 ... = A007662.
  5 | 1 2 3  4   5   6   14    24     36      50 ... = A085157.
  6 | 1 2 3  4   5   6    7    16     27      40 ... = A085158.
		

Crossrefs

Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662(n!4), A085157 (n!5), A085158 (n!6), A114799 (n!7), A114800 (n!8), A114806 (n!9), A288327 (n!10).
Cf. A114423 (transposed).

Programs

  • Maple
    A:= proc(k,n) option remember; if n >= 1 then n* A(k, n-k) elif n >= 1-k then 1 else 0 fi end: seq(seq(A(1+d-n, n), n=1..d), d=1..16); # Alois P. Heinz, Feb 02 2009
  • Mathematica
    A[k_, n_] := A[k, n] = If[n >= 1, n*A[k, n-k], If[n >= 1-k, 1, 0]]; Table[ A[1+d-n, n], {d, 1, 16}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)

Formula

A(k,n) = n!k.
A(k,n) = M(n,k) in A114423. - Georg Fischer, Nov 02 2021

Extensions

Corrected and extended by Alois P. Heinz, Feb 02 2009

A142589 Square array T(n,m) = Product_{i=0..m} (1+n*i) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 15, 4, 1, 1, 120, 105, 28, 5, 1, 1, 720, 945, 280, 45, 6, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1, 3628800, 34459425, 24344320, 5221125, 576576, 43225, 2640, 153, 10, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 22 2008

Keywords

Comments

Antidiagonal sums are {1, 2, 4, 11, 45, 260, 1998, 19735, 244797, 3729346, 68276276, ...}.

Examples

			The transpose of the array is:
    1,    1,     1,     1,      1,      1,      1,      1,     1,
    1,    2,     3,     4,      5,      6,      7,      8,     9,
    1,    6,    15,    28,     45,     66,     91,     120,   153, ... A000384
    1,   24,   105,   280,    585,   1056,   1729,    2640,  3825, ... A011199
    1,  120,   945,  3640,   9945,  22176,  43225,   76560, 126225,... A011245
    1,  720, 10395, 58240, 208845, 576576, 1339975, 2756160,...
        /      |       \       \
   A000142  A001147  A007559  A007696
		

Crossrefs

Cf. A000142, A006882(2n-1) = A001147, A007661(3n-2) = A007559, A007662(4n-3) = A007696, A153274.

Programs

  • Magma
    function T(n,k)
      if k eq 0 or n eq 0 then return 1;
      else return (&*[j*k+1: j in [0..n]]);
      end if; return T; end function;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 05 2020
    
  • Maple
    T:= (n, k)-> `if`(n=0, 1, mul(j*k+1, j=0..n)):
    seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Mar 05 2020
  • Mathematica
    T[n_, k_]= If[n==0, 1, Product[1 + k*i, {i,0,n}]]; Table[T[n-k, k], {n,0,10}, {k,0,n}]//Flatten
  • PARI
    T(n, k) = if(n==0, 1, prod(j=0, n, j*k+1) );
    for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 05 2020
    
  • Sage
    def T(n, k):
        if (k==0 and n==0): return 1
        else: return product(j*k+1 for j in (0..n))
    [[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 05 2020

Extensions

Edited by M. F. Hasler, Oct 28 2014
More terms added by G. C. Greubel, Mar 05 2020

A214916 a(0) = a(1) = 1, a(n) = n! / a(n-2).

Original entry on oeis.org

1, 1, 2, 6, 12, 20, 60, 252, 672, 1440, 5400, 27720, 88704, 224640, 982800, 5821200, 21288960, 61102080, 300736800, 1990850400, 8089804800, 25662873600, 138940401600, 1007370302400, 4465572249600, 15397724160000, 90311261040000, 707173952284800, 3375972620697600
Offset: 0

Views

Author

Alex Ratushnyak, Aug 03 2012

Keywords

Comments

a(n) is least k > a(n-1) such that k*a(n-2) is a factorial.
Two periodic subsets of these numbers appear in the coefficients of a series involved in a solution of a Riccati-type differential equation addressed by the Bernoulli brothers: z = 1 - x^4/12 + x^8/672 - x^12/88704 + ... = 1 - 2 * x^4/4! + 60 * x^8/8! - 5400 * x^12/12! + ... . See the MathOverflow question. - Tom Copeland, Jan 24 2017

Crossrefs

Programs

  • Magma
    [1] cat  [n le 2 select n  else  Factorial(n)  div  Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 25 2017
  • Python
    import math
    prpr = prev = 1
    for n in range(2, 33):
        print(prpr, end=', ')
        cur = math.factorial(n) // prpr
        prpr = prev
        prev = cur
    

Formula

a(0) = a(1) = 1, for n>=2, a(n) = n! / a(n-2).
a(n) = n!!!! * (n-1)!!!! = A007662(n) * A007662(n-1), for n >= 1. - David Radcliffe, Jun 05 2025

A235136 a(n) = (2*n - 1) * a(n-2) for n>1, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 3, 5, 21, 45, 231, 585, 3465, 9945, 65835, 208845, 1514205, 5221125, 40883535, 151412625, 1267389585, 4996616625, 44358635475, 184874815125, 1729986783525, 7579867420125, 74389431691575, 341094033905625, 3496303289504025, 16713607661375625
Offset: 0

Views

Author

Michael Somos, Jan 03 2014

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 5*x^3 + 21*x^4 + 45*x^5 + 231*x^6 + 585*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := 2^n If[ OddQ[n], 2 Pochhammer[ 1/4, (n + 1)/2], Pochhammer[ 3/4, n/2]]; (* Michael Somos, Jan 16 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (-2 Gamma[5/2] HermiteH[ -3/2, x] + (3 Gamma[5/4] + 2 Gamma[7/4]) Hypergeometric1F1[ 3/4, 1/2, x^2]) / (3 Gamma[5/4]), {x, 0, n}] // FullSimplify]; (* Michael Somos, Jan 16 2014 *)
    RecurrenceTable[{a[0]==a[1]==1, a[n]==(2 n - 1) a[n - 2]}, a, {n, 25}] (* Vincenzo Librandi, Aug 08 2018 *)
  • PARI
    {a(n) = if( n<0, (-1)^(-n\2) / a(-1-n), if( n<2, 1, (2*n - 1) * a(n-2)))};

Formula

Let b(n) = a(2*n - 2) / a(2*n + 1). Then b(-n) = b(n), 0 = b(n+1) * (b(n+1) + 2*b(n+2)) + b(n) * (2*b(n+1) - 5*b(n+2)) for all n in Z.
a(n-1) + a(n-2) = A196265(n) if n>1.
a(2*n) = A008545(n). a(2*n - 1) = A007696(n). a(n) = A007662(2*n - 1).
E.g.f. A(x) =: y satisfies 0 = y * 3 + y' * 2*x - y''.
0 = a(n)*(2*a(n+1) - a(n+3)) + a(n+1)*(a(n+2)) for all n in Z. - Michael Somos, Jan 24 2014
Let b(n) = a(n - 2) / a(n + 1). Then b(-n) = (-1)^n * b(n), 0 = b(n) * (b(n+1) - 4*b(n+3)) + b(n+2) * (2*b(n+1) + b(n+3)) for all n in Z. - Michael Somos, Sep 13 2014
a(n) ~ c * sqrt(Pi) * (2*n)^(n/2+1/4) / exp(n/2), where c = 2/Gamma(1/4) if n is odd, and 1/Gamma(3/4) if n is even. - Amiram Eldar, Sep 01 2025

A297707 a(n) = Product_{k=1..n-1} n!k, where n!k is k-tuple factorial of n.

Original entry on oeis.org

1, 2, 18, 768, 90000, 44789760, 30494620800, 121762322841600, 393644011735296000, 5618427494400000000000, 107587910030480590233600000, 5951222311476064581656248320000, 176804782652901880753915871232000000, 69819090744423637487544223697731584000000
Offset: 1

Views

Author

Lechoslaw Ratajczak, Jan 03 2018

Keywords

Comments

What is the least n > 2 for which a(n) - prevprime(a(n)) is a composite number? If such a number n exists, it is greater than 250.
The least n for which nextprime(a(n)) - a(n) is a composite number is 158.

Examples

			a(2) = (2!1) = (2*1) = 2;
a(3) = (3!1)*(3!2) = (3*2*1)*(3*1) = 18;
a(4) = (4!1)*(4!2)*(4!3) = (4*3*2*1)*(4*2)*(4*1) = 768;
a(5) = (5!1)*(5!2)*(5!3)*(5!4) = (5*4*3*2*1)*(5*3*1)*(5*2)*(5*1) = 90000.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n<1, 1, n*b(n-k, k)) end:
    a:= n-> mul(b(n, k), k=1..n-1):
    seq(a(n), n=1..20);  # Alois P. Heinz, Dec 02 2018
  • Mathematica
    Array[(#^(# - 1)) Product[k^DivisorSigma[0, # - k], {k, # - 1}] &, 13] (* Michael De Vlieger, Jan 04 2018 *)
  • PARI
    a(n) = (n^(n-1))*prod(k=1, n-1, k^numdiv(n-k)); \\ Michel Marcus, Dec 02 2018

Formula

a(n) = Product_{t=1..n-1} (Product_{k=0..floor((n-1)/t)} (n-t*k)).
a(n) = (n^(n-1))*Product_{k=1..n-1} k^tau(n-k).
Previous Showing 41-50 of 63 results. Next