A143857
a(n) = n + (n+1)*(n+2)^(n+3).
Original entry on oeis.org
8, 163, 3074, 62503, 1399684, 34588811, 939524102, 27894275215, 900000000008, 31384283767219, 1176925259169802, 47248516628391479, 2022385242251558924, 91957716979980468763, 4427218577690292387854, 225009351233083599856159
Offset: 0
a(1) = 1+(1+1)*(1+2)^(1+3) = 1+2*3^4 = 163.
-
List([0..20], n-> n + (n+1)*(n+2)^(n+3)); # G. C. Greubel, Nov 09 2019
-
[n+(n+1)*(n+2)^(n+3): n in [0..20]]; // Vincenzo Librandi, Dec 27 2010
-
A143857:=n->n+(n+1)*(n+2)^(n+3); seq(A143857(n), n=0..20); # Wesley Ivan Hurt, Mar 20 2014
-
Table[n + (n+1)*(n+2)^(n+3), {n, 0, 20}] (* Vincenzo Librandi, Mar 20 2014 *)
-
vector(21, n, (n-1) + n*(n+1)^(n+2)) \\ G. C. Greubel, Nov 09 2019
-
[n + (n+1)*(n+2)^(n+3) for n in (0..20)] # G. C. Greubel, Nov 09 2019
A280255
Numbers k such that tau(k^(k+1)) is a prime.
Original entry on oeis.org
3, 4, 5, 11, 17, 25, 29, 41, 49, 59, 71, 101, 107, 125, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 343, 347, 419, 431, 461, 521, 529, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319
Offset: 1
tau(4^5) = tau(1024) = 11 (prime).
-
[n: n in [1..500] | IsPrime(NumberOfDivisors(n^(n+1)))];
-
N:= 10000: # for terms <= N
P:= select(isprime,[2,seq(i,i=3..N,2)]):
R:= {}:
for p in P do
Qs:= select(q -> isprime(1 + q + q*p^q), {$1..ilog[p](N)});
R:= R union map(q -> p^q, Qs)
od:
sort(convert(R,list)); # Robert Israel, Sep 02 2024
-
Select[Range[1319], PrimeQ@DivisorSigma[0, #^(# + 1)] &] (* Giovanni Resta, Mar 07 2017 *)
-
isok(n) = isprime(numdiv(n^(n+1))); \\ Michel Marcus, Mar 07 2017
A356238
a(n) = Sum_{k=1..n} (k * floor(n/k))^n.
Original entry on oeis.org
1, 8, 62, 849, 8541, 206345, 2581403, 76623522, 1617299079, 49463993875, 952905453423, 59000021366675, 1198427462876421, 54128102218676115, 2321105129608323165, 117387839988330848902, 3205342976298888473968, 268263812478494295219717
Offset: 1
-
a[n_] := Sum[(k * Floor[n/k])^n, {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Jul 30 2022 *)
-
a(n) = sum(k=1, n, (k*(n\k))^n);
-
a(n) = sum(k=1, n, k^n*sumdiv(k, d, 1-(1-1/d)^n));
A004217
a(n) = (n^n)^(n^n).
Original entry on oeis.org
1, 1, 256, 443426488243037769948249630619149892803
Offset: 0
A036360
a(n) = Sum_{k=1..n} n! * n^(n-k+1) / (n-k)!.
Original entry on oeis.org
0, 1, 12, 153, 2272, 39225, 776736, 17398969, 435538944, 12058401393, 366021568000, 12090393761721, 431832459644928, 16585599200808937, 681703972229640192, 29858718555221585625, 1388451967046195347456, 68316647610168842824161, 3546179063131198669848576, 193670918442059606406896473
Offset: 0
Example: Consider the map [1,2,3,4] -> [2,3,4,4]. The trajectory of node one is [1,2,3,4]. Hence the tail length is three and the cycle size is one, a fixed point.
- F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 30, Exercise 1.15a.
- P. Flajolet and A. Odlyzko, Random Mapping Statistics, INRIA RR 1114.
-
a := proc(n) local k; add(n!*n^(n-k+1)/(n-k)!, k=0..n); end;
# Alternative, e.g.f.:
T := -LambertW(-x): egf := (T + T^2)/(1 - T)^4: ser := series(egf, x, 22):
seq(n!*coeff(ser, x, n), n = 0..19); # Peter Luschny, Jul 20 2024
-
Table[Sum[n!*n^(n-k+1)/(n-k)!, {k, 1, n}], {n, 0, 19}] (* James C. McMahon, Feb 07 2024 *)
a[n_] := n E^n Gamma[n + 1, n] - n^(n + 1);
Table[a[n], {n, 0, 19}] (* Peter Luschny, Jul 20 2024 *)
-
a(n) = sum(k=1, n, n! * n^(n-k+1) / (n-k)!) \\ Andrew Howroyd, Jan 06 2024
-
def a(n):
total_sum = 0
for k in range(1, n + 1):
term = (math.factorial(n) / math.factorial(n - k))*(k**2)*(n**(n - k))
total_sum += term
return total_sum
# Brian P Hawkins, Jan 06 2024
Offset set to 0 and a(0) = 0 prepended by
Marko Riedel, Jul 20 2024
A076482
Triangle with T(n,k)=n!*(k-1)^k/k! where 1<=k<=n.
Original entry on oeis.org
0, 0, 1, 0, 3, 8, 0, 12, 32, 81, 0, 60, 160, 405, 1024, 0, 360, 960, 2430, 6144, 15625, 0, 2520, 6720, 17010, 43008, 109375, 279936, 0, 20160, 53760, 136080, 344064, 875000, 2239488, 5764801, 0, 181440, 483840, 1224720, 3096576, 7875000, 20155392, 51883209, 134217728
Offset: 1
Rows start
0;
0, 1;
0, 3, 8;
0, 12, 32, 81;
0, 60, 160, 405, 1024;
0, 360, 960, 2430, 6144, 15625;
...
-
Table[n! (k-1)^k/k!,{n,0,10},{k,n}]//Flatten (* Harvey P. Dale, Nov 28 2019 *)
A108397
Sums of rows of the triangle in A108396.
Original entry on oeis.org
0, 2, 10, 66, 692, 9780, 167982, 3362828, 76695880, 1961316270, 55555555610, 1726135607262, 58359930206844, 2132745542253872, 83767436069591302, 3518790190560477240, 157412216095654840592, 7471013615160978901626
Offset: 0
A350202
Number T(n,k) of nodes in the k-th connected component of all endofunctions on [n] when components are ordered by increasing size; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 7, 1, 61, 19, 1, 709, 277, 37, 1, 9911, 4841, 811, 61, 1, 167111, 91151, 19706, 1876, 91, 1, 3237921, 1976570, 486214, 60229, 3739, 127, 1, 71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1, 1780353439, 1257567127, 380291461, 62248939, 5971291, 340729, 11197, 217, 1
Offset: 1
Triangle T(n,k) begins:
1;
7, 1;
61, 19, 1;
709, 277, 37, 1;
9911, 4841, 811, 61, 1;
167111, 91151, 19706, 1876, 91, 1;
3237921, 1976570, 486214, 60229, 3739, 127, 1;
71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(g(i)^j*
b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
(n, i$j, n-i*j)), j=0..n/i)))
end:
T:= (n, k)-> b(n, 1, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..10);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][g[i]^j*b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]];
T[n_, k_] := b[n, 1, k][[2]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
A020955
a(n) = n^(2^n - n - 1).
Original entry on oeis.org
1, 1, 2, 81, 4194304, 1490116119384765625, 226267027688376192080197927193400943822503936, 258086210989349276047917817413172383631691140276099547911280598425927853437317437263620645695945672001
Offset: 0
For n=2, a(2)=2, universe class={0,1}.
1 : { }ma 0, {0}ma 1, {0,1}ma 1, {1}ma 0,
2 : { }ma 0, {0}ma 1, {0,1}ma 1, {1}ma 1.
A060375
a(n) = (n+2)^(n+3) - n^(n+1).
Original entry on oeis.org
8, 80, 1016, 15544, 278912, 5749176, 133937792, 3481019600, 99865782272, 3134941592320, 106893205379072, 3934237957322568, 155461102352433152, 6564470979327191336, 294992337083795013632, 14056516043712012100384
Offset: 0
a(1) = |0^1 - 2^3| = 8, a(2) = |1^2 - 3^4| = 80.
-
Table[(-n^(n+1)+(n+2)^(n+3)),{n,0,18}] (* Alexander Adamchuk, Nov 18 2006 *)
#[[3]]^#[[4]]-#[[1]]^#[[2]]&/@Partition[Range[0,20],4,1] (* Harvey P. Dale, Oct 07 2023 *)
-
{ for (n=0, 100, write("b060375.txt", n, " ", (n + 2)^(n + 3) - n^(n + 1)); ) } \\ Harry J. Smith, Jul 04 2009
More terms from Larry Reeves (larryr(AT)acm.org), Apr 20 2001
Comments