cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 67 results. Next

A143857 a(n) = n + (n+1)*(n+2)^(n+3).

Original entry on oeis.org

8, 163, 3074, 62503, 1399684, 34588811, 939524102, 27894275215, 900000000008, 31384283767219, 1176925259169802, 47248516628391479, 2022385242251558924, 91957716979980468763, 4427218577690292387854, 225009351233083599856159
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 03 2008

Keywords

Comments

Suggested by Karl Vago's contributions to Dario Alpern's list of records.

Examples

			a(1) = 1+(1+1)*(1+2)^(1+3) = 1+2*3^4 = 163.
		

Crossrefs

Programs

Formula

a(n) = n + A061250(n+3). - R. J. Mathar, Sep 04 2008

A280255 Numbers k such that tau(k^(k+1)) is a prime.

Original entry on oeis.org

3, 4, 5, 11, 17, 25, 29, 41, 49, 59, 71, 101, 107, 125, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 343, 347, 419, 431, 461, 521, 529, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319
Offset: 1

Views

Author

Jaroslav Krizek, Mar 07 2017

Keywords

Comments

tau(k) is the number of positive divisors of k (A000005).
Numbers k such that A000005(A007778(k)) is a prime.
Lesser of twin primes (A001359) are terms. If p is lesser of twin primes then tau(p^(p+1)) = p + 2 (see A006512).
Sequence of composite terms c: 4, 25, 49, 125, 343, 529, 1369, ...; (tau(c^(c+1)): 11, 53, 101, 379, 1033, 1061, 2741, ...).
Numbers of the form p^k where p is prime and 1 + k * (1 + p^k) is prime. - Robert Israel, Sep 02 2024

Examples

			tau(4^5) = tau(1024) = 11 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..500] | IsPrime(NumberOfDivisors(n^(n+1)))];
    
  • Maple
    N:= 10000: # for terms <= N
    P:= select(isprime,[2,seq(i,i=3..N,2)]):
    R:= {}:
    for p in P do
      Qs:= select(q -> isprime(1 + q + q*p^q), {$1..ilog[p](N)});
      R:= R union map(q -> p^q, Qs)
    od:
    sort(convert(R,list)); # Robert Israel, Sep 02 2024
  • Mathematica
    Select[Range[1319], PrimeQ@DivisorSigma[0, #^(# + 1)] &] (* Giovanni Resta, Mar 07 2017 *)
  • PARI
    isok(n) = isprime(numdiv(n^(n+1))); \\ Michel Marcus, Mar 07 2017

A356238 a(n) = Sum_{k=1..n} (k * floor(n/k))^n.

Original entry on oeis.org

1, 8, 62, 849, 8541, 206345, 2581403, 76623522, 1617299079, 49463993875, 952905453423, 59000021366675, 1198427462876421, 54128102218676115, 2321105129608323165, 117387839988330848902, 3205342976298888473968, 268263812478494295219717
Offset: 1

Views

Author

Seiichi Manyama, Jul 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(k * Floor[n/k])^n, {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Jul 30 2022 *)
  • PARI
    a(n) = sum(k=1, n, (k*(n\k))^n);
    
  • PARI
    a(n) = sum(k=1, n, k^n*sumdiv(k, d, 1-(1-1/d)^n));

Formula

a(n) = Sum_{k=1..n} k^n * Sum_{d|k} (1 - (1 - 1/d)^n).

A004217 a(n) = (n^n)^(n^n).

Original entry on oeis.org

1, 1, 256, 443426488243037769948249630619149892803
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2000

Keywords

Comments

The next four terms have 617, 10922, 217833 and 4871823 digits respectively. - Rick L. Shepherd, May 07 2006

Programs

  • Mathematica
    (#^#)^(#^#)&/@Range[4] (* Harvey P. Dale, Dec 25 2024 *)

Formula

a(n) = A000312(A000312(n)) = n^A007778(n) = A002488(n)^n = A002489(n)^A000169(n).

Extensions

a(0) prepended by Jinyuan Wang, Jan 17 2025

A036360 a(n) = Sum_{k=1..n} n! * n^(n-k+1) / (n-k)!.

Original entry on oeis.org

0, 1, 12, 153, 2272, 39225, 776736, 17398969, 435538944, 12058401393, 366021568000, 12090393761721, 431832459644928, 16585599200808937, 681703972229640192, 29858718555221585625, 1388451967046195347456, 68316647610168842824161, 3546179063131198669848576, 193670918442059606406896473
Offset: 0

Views

Author

Keywords

Comments

This formula is given as a solution to Exercise 1.15a in the Harary and Palmer reference on page 30. However, the formula may not be correct and could be a misprint for Sum_{k=2..n} n! * n^(n-k-1) / (n-k)! which is a formula for A000435(n). - Andrew Howroyd, Feb 06 2024
It appears that a(n) * n^-(n+1) is the mean position of the first duplicate in sequences of n elements randomly drawn with replacement. - Brian P Hawkins, Jan 06 2024
Total count over all mappings from [n] to [n] of tail length plus cycle size of all nodes, where mappings are sets of cycles of trees and tail length is the distance to the cycle that eventually traps the iterates of a node of the mapping; cycle size is the size of that cycle. Alternatively, number of elements on the trajectory of iterates of a node until a repeat is seen, summed over all nodes and mappings. - Marko Riedel, Jul 20 2024

Examples

			Example: Consider the map [1,2,3,4] -> [2,3,4,4]. The trajectory of node one is [1,2,3,4]. Hence the tail length is three and the cycle size is one, a fixed point.
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 30, Exercise 1.15a.
  • P. Flajolet and A. Odlyzko, Random Mapping Statistics, INRIA RR 1114.

Crossrefs

Programs

  • Maple
    a := proc(n) local k; add(n!*n^(n-k+1)/(n-k)!, k=0..n); end;
    # Alternative, e.g.f.:
    T := -LambertW(-x): egf := (T + T^2)/(1 - T)^4: ser := series(egf, x, 22):
    seq(n!*coeff(ser, x, n), n = 0..19);  # Peter Luschny, Jul 20 2024
  • Mathematica
    Table[Sum[n!*n^(n-k+1)/(n-k)!, {k, 1, n}], {n, 0, 19}] (* James C. McMahon, Feb 07 2024 *)
    a[n_] := n E^n Gamma[n + 1, n] - n^(n + 1);
    Table[a[n], {n, 0, 19}]  (* Peter Luschny, Jul 20 2024 *)
  • PARI
    a(n) = sum(k=1, n, n! * n^(n-k+1) / (n-k)!) \\ Andrew Howroyd, Jan 06 2024
  • Python
    def a(n):
        total_sum = 0
        for k in range(1, n + 1):
            term = (math.factorial(n) / math.factorial(n - k))*(k**2)*(n**(n - k))
            total_sum += term
        return total_sum
    # Brian P Hawkins, Jan 06 2024
    

Formula

a(n) = n^2 * A001865(n). - Gerald McGarvey, Apr 17 2008
a(n) = Sum_{k=1..n} n! * k^2 * n^(n-k) / (n-k)!. - Brian P Hawkins, Jan 06 2024
a(n) = n! * [z^n] (T+T^2)/(1-T)^4 where T is Cayley's tree function T(z) = Sum_{n >= 1} n^(n-1) * z^n/n!. - Marko Riedel, Jul 20 2024
a(n) ~ n^n * ((1/2) * n * sqrt(2 * Pi * n) - (1/3) * n) - Marko Riedel, Jul 20 2024
a(n) = n * e^n * Gamma(n + 1, n) - n^(n + 1) = 2*A262970(n) - A007778(n). - Peter Luschny, Jul 20 2024

Extensions

Offset corrected by Brian P Hawkins, Jan 06 2024
Name edited by Andrew Howroyd, Feb 06 2024
Offset set to 0 and a(0) = 0 prepended by Marko Riedel, Jul 20 2024

A076482 Triangle with T(n,k)=n!*(k-1)^k/k! where 1<=k<=n.

Original entry on oeis.org

0, 0, 1, 0, 3, 8, 0, 12, 32, 81, 0, 60, 160, 405, 1024, 0, 360, 960, 2430, 6144, 15625, 0, 2520, 6720, 17010, 43008, 109375, 279936, 0, 20160, 53760, 136080, 344064, 875000, 2239488, 5764801, 0, 181440, 483840, 1224720, 3096576, 7875000, 20155392, 51883209, 134217728
Offset: 1

Views

Author

Henry Bottomley, Oct 14 2002

Keywords

Examples

			Rows start
  0;
  0,   1;
  0,   3,   8;
  0,  12,  32,   81;
  0,  60, 160,  405, 1024;
  0, 360, 960, 2430, 6144, 15625;
  ...
		

Crossrefs

Row sums are A076483.

Programs

  • Mathematica
    Table[n! (k-1)^k/k!,{n,0,10},{k,n}]//Flatten (* Harvey P. Dale, Nov 28 2019 *)

Formula

T(n,k) = n*T(n, k-1) = A007778(k-1)*A008279(n,n-k) starting with T(n,n) = (n-1)^n = A007778(n-1).

A108397 Sums of rows of the triangle in A108396.

Original entry on oeis.org

0, 2, 10, 66, 692, 9780, 167982, 3362828, 76695880, 1961316270, 55555555610, 1726135607262, 58359930206844, 2132745542253872, 83767436069591302, 3518790190560477240, 157412216095654840592, 7471013615160978901626
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 02 2005

Keywords

Crossrefs

Programs

  • Haskell
    a108397 0 = 0
    a108397 1 = 2
    a108397 n = n * (n^(n+1) + n^2 - 2) `div` (2 * (n-1))
    -- Reinhard Zumkeller, Mar 31 2015

Formula

a(n) = n*(n^(n+1) + n^2 - 2) / (2*(n-1)) for n>1.

A350202 Number T(n,k) of nodes in the k-th connected component of all endofunctions on [n] when components are ordered by increasing size; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 7, 1, 61, 19, 1, 709, 277, 37, 1, 9911, 4841, 811, 61, 1, 167111, 91151, 19706, 1876, 91, 1, 3237921, 1976570, 486214, 60229, 3739, 127, 1, 71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1, 1780353439, 1257567127, 380291461, 62248939, 5971291, 340729, 11197, 217, 1
Offset: 1

Views

Author

Alois P. Heinz, Dec 19 2021

Keywords

Examples

			Triangle T(n,k) begins:
         1;
         7,        1;
        61,       19,        1;
       709,      277,       37,       1;
      9911,     4841,      811,      61,      1;
    167111,    91151,    19706,    1876,     91,    1;
   3237921,  1976570,   486214,   60229,   3739,  127,   1;
  71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1;
  ...
		

Crossrefs

Column k=1 gives A350157.
Row sums give A007778.
T(n+1,n) gives A003215 for n>=1.

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(g(i)^j*
            b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
             (n, i$j, n-i*j)), j=0..n/i)))
        end:
    T:= (n, k)-> b(n, 1, k)[2]:
    seq(seq(T(n, k), k=1..n), n=1..10);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][g[i]^j*b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]];
    T[n_, k_] := b[n, 1, k][[2]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)

A020955 a(n) = n^(2^n - n - 1).

Original entry on oeis.org

1, 1, 2, 81, 4194304, 1490116119384765625, 226267027688376192080197927193400943822503936, 258086210989349276047917817413172383631691140276099547911280598425927853437317437263620645695945672001
Offset: 0

Views

Author

Keywords

Comments

Number of finite models of natural number on the free class with n members.

Examples

			For n=2, a(2)=2, universe class={0,1}.
1 : { }ma 0, {0}ma 1, {0,1}ma 1, {1}ma 0,
2 : { }ma 0, {0}ma 1, {0,1}ma 1, {1}ma 1.
		

Crossrefs

Cf. A097547.

Formula

a(n) = A097547(n)/A007778(n), n > 0. - R. J. Mathar, Jan 12 2017

Extensions

a(0)=1 and a(7) corrected by Vincenzo Librandi, Apr 25 2011

A060375 a(n) = (n+2)^(n+3) - n^(n+1).

Original entry on oeis.org

8, 80, 1016, 15544, 278912, 5749176, 133937792, 3481019600, 99865782272, 3134941592320, 106893205379072, 3934237957322568, 155461102352433152, 6564470979327191336, 294992337083795013632, 14056516043712012100384
Offset: 0

Views

Author

Jason Earls, Apr 02 2001

Keywords

Comments

a(n) is divisible by 8. 2^(3+4k) divides a(4k) and a(4k+2). 8k divides a(4k-1). 4(4k+2) divides a(4k+1). - Alexander Adamchuk, Nov 18 2006

Examples

			a(1) = |0^1 - 2^3| = 8, a(2) = |1^2 - 3^4| = 80.
		

Crossrefs

Cf. A007778 (n^(n+1)).

Programs

  • Mathematica
    Table[(-n^(n+1)+(n+2)^(n+3)),{n,0,18}] (* Alexander Adamchuk, Nov 18 2006 *)
    #[[3]]^#[[4]]-#[[1]]^#[[2]]&/@Partition[Range[0,20],4,1] (* Harvey P. Dale, Oct 07 2023 *)
  • PARI
    { for (n=0, 100, write("b060375.txt", n, " ", (n + 2)^(n + 3) - n^(n + 1)); ) } \\ Harry J. Smith, Jul 04 2009

Formula

a(n) = A007778(n+2) - A007778(n). - Alexander Adamchuk, Nov 18 2006

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 20 2001
Better description from Alexander Adamchuk, Nov 18 2006
Previous Showing 31-40 of 67 results. Next