A008786
a(n) = (n+5)^n.
Original entry on oeis.org
1, 6, 49, 512, 6561, 100000, 1771561, 35831808, 815730721, 20661046784, 576650390625, 17592186044416, 582622237229761, 20822964865671168, 799006685782884121, 32768000000000000000, 1430568690241985328321, 66249952919459433152512, 3244150909895248285300369
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785, this sequence,
A008787,
A008788,
A008789,
A008790,
A008791.
-
List([0..20], n-> (n+5)^n); # G. C. Greubel, Sep 11 2019
-
[(n+5)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
Table[(n+5)^n,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n+4)^(n-1)) \\ G. C. Greubel, Sep 11 2019
-
[(n+5)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008787
a(n) = (n + 6)^n.
Original entry on oeis.org
1, 7, 64, 729, 10000, 161051, 2985984, 62748517, 1475789056, 38443359375, 1099511627776, 34271896307633, 1156831381426176, 42052983462257059, 1638400000000000000, 68122318582951682301, 3011361496339065143296
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786, this sequence,
A008788,
A008789,
A008790,
A008791.
-
List([0..20], n-> (n+6)^n); # G. C. Greubel, Sep 11 2019
-
[(n+6)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:= n-> (n+6)^n: seq(a(n), n=0..20);
-
Table[(n+6)^n,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n+5)^(n-1)) \\ G. C. Greubel, Sep 11 2019
-
[(n+6)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008790
a(n) = n^(n+4).
Original entry on oeis.org
0, 1, 64, 2187, 65536, 1953125, 60466176, 1977326743, 68719476736, 2541865828329, 100000000000000, 4177248169415651, 184884258895036416, 8650415919381337933, 426878854210636742656, 22168378200531005859375
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008789,
A008791.
-
List([0..20], n-> n^(n+4)); # G. C. Greubel, Sep 11 2019
-
[n^(n+4): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:=n->mul(n,k=-3..n):seq(a(n),n=0..20); # Zerinvary Lajos, Jan 26 2008
-
Table[n^(n+4),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+3)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+4) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A350452
Number T(n,k) of endofunctions on [n] with exactly k connected components and no fixed points; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.
Original entry on oeis.org
1, 0, 0, 1, 0, 8, 0, 78, 3, 0, 944, 80, 0, 13800, 1810, 15, 0, 237432, 41664, 840, 0, 4708144, 1022252, 34300, 105, 0, 105822432, 27098784, 1286432, 10080, 0, 2660215680, 778128336, 47790540, 648900, 945, 0, 73983185000, 24165049920, 1815578160, 36048320, 138600
Offset: 0
Triangle T(n,k) begins:
1;
0;
0, 1;
0, 8;
0, 78, 3;
0, 944, 80;
0, 13800, 1810, 15;
0, 237432, 41664, 840;
0, 4708144, 1022252, 34300, 105;
0, 105822432, 27098784, 1286432, 10080;
0, 2660215680, 778128336, 47790540, 648900, 945;
...
-
c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(
b(n-i)*binomial(n-1, i-1)*x*c(i), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
seq(T(n), n=0..12);
-
c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
b[n - i]*Binomial[n - 1, i - 1]*x*c[i], {i, 1, n}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n/2}]][b[n]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
-
\\ here AS1(n,k) gives associated Stirling numbers of 1st kind.
AS1(n,k)={(-1)^(n+k)*sum(i=0, k, (-1)^i * binomial(n, i) * stirling(n-i, k-i, 1) )}
T(n,k) = {if(n==0, k==0, sum(j=k, n, n^(n-j)*binomial(n-1, j-1)*AS1(j,k)))} \\ Andrew Howroyd, Jan 20 2023
A060348
a(n) = n^n * (n^2 - 1)/24.
Original entry on oeis.org
9, 160, 3125, 68040, 1647086, 44040192, 1291401630, 41250000000, 1426558353055, 53125098504192, 2120125746145771, 90285055457658880, 4087009643554687500, 195996655783163985920, 9926883142636041170124, 529537075346699234869248
Offset: 3
Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001
- B. Shapiro, M. Shapiro and A. Vainshtein, Ramified coverings of S^2 with one degenerate branching point and enumeration of edge-ordered graphs, Amer. Math. Soc. Transl., Vol. 180 (1997), pp. 219-227.
-
{ for (n=3, 200, write("b060348.txt", n, " ", n^n * (n^2 - 1)/24); ) } \\ Harry J. Smith, Jul 04 2009
A060349
a(n) = n^(n+2)*(n^2 - 1)*(n+3)*(n+2)*(5*n - 7)/5760.
Original entry on oeis.org
81, 5824, 328125, 16901136, 847425747, 42630905856, 2186213819427, 115293750000000, 6283133610195442, 354769407810994176, 20781472563720847342, 1263485180096661430272, 79727340621643066406250, 5219469342167970210643968, 354305349685394263423480746
Offset: 3
Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001
- B. Shapiro, M. Shapiro and A. Vainshtein, Ramified coverings of S^2 with one degenerate branching point and enumeration of edge-ordered graphs, Amer. Math. Soc. Transl., Vol. 180 (1997), pp. 219-227.
-
Table[(n^(n+2) (n^2-1)(n+3)(n+2)(5n-7))/5760,{n,3,20}] (* Harvey P. Dale, Jan 10 2013 *)
-
{ for (n=3, 200, write("b060349.txt", n, " ", n^(n + 2)*(n^2 - 1)*(n + 3)*(n + 2)*(5*n - 7)/5760); ) } \\ Harry J. Smith, Jul 04 2009
A140647
Number of car parking assignments of n cars in n spaces, if one car does not park.
Original entry on oeis.org
1, 10, 107, 1346, 19917, 341986, 6713975, 148717762, 3674435393, 100284451730, 2998366140915, 97510068994690, 3428106725444117, 129590070259759042, 5242767731544271343, 226057515078414496898, 10350122253780835777545, 501543984793431059579122
Offset: 2
a(3) = 10: [1,3,3], [2,2,2], [2,2,3], [2,3,2], [2,3,3], [3,1,3], [3,2,2], [3,2,3], [3,3,1], [3,3,2].
A157994
Number of trees with n edges equipped with a cyclic order on their edges, i.e., number of orbits of the action of Z/nZ on the set of edge-labeled trees of size n, given by cyclically permuting the labels.
Original entry on oeis.org
1, 1, 2, 8, 44, 411, 4682, 66524, 1111134, 21437357, 469070942, 11488238992, 311505013052, 9267596377239, 300239975166840, 10523614185609344, 396861212733968144, 16024522976922760209, 689852631578947368422
Offset: 1
Corrected the formula and Sage code - Nikos Apostolakis, Feb 27 2011.
Original entry on oeis.org
1, 2, 3, 6, 22, 147, 1443, 18250, 280394, 5063363, 105063363, 2463011054, 64380375278, 1856540769315, 58550453144611, 2004745521503986, 74062339559431922, 2936485391069247715, 124376016487663499491
Offset: 0
a(19) = 1 + 1 + 1 + 3 + 16 + 125 + 1296 + 16807 + 262144 + 4782969 + 100000000 + 2357947691 + 61917364224 + 1792160394037 + 56693912375296 + 1946195068359375 + 72057594037927936 + 2862423051509815793 + 121439531096594251776 + 5480386857784802185939.
Cf.
A000055,
A000169,
A000312,
A007778,
A007830,
A008785-
A008791,
A033842,
A000272,
A036361,
A036362,
A036506,
A000055,
A054581,
A097170
A364870
Array read by ascending antidiagonals: A(n, k) = (n + k)^n, with k >= 0.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 27, 9, 3, 1, 256, 64, 16, 4, 1, 3125, 625, 125, 25, 5, 1, 46656, 7776, 1296, 216, 36, 6, 1, 823543, 117649, 16807, 2401, 343, 49, 7, 1, 16777216, 2097152, 262144, 32768, 4096, 512, 64, 8, 1, 387420489, 43046721, 4782969, 531441, 59049, 6561, 729, 81, 9, 1
Offset: 0
The array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
4, 9, 16, 25, 36, 49, ...
27, 64, 125, 216, 343, 512, ...
256, 625, 1296, 2401, 4096, 6561, ...
3125, 7776, 16807, 32768, 59049, 100000, ...
...
Cf.
A000012 (n=0),
A000169,
A000272,
A000312 (k=0),
A007830 (k=3),
A008785 (k=4),
A008786 (k=5),
A008787 (k=6),
A031973 (antidiagonal sums),
A052746 (2nd superdiagonal),
A052750,
A062971 (main diagonal),
A079901 (read by descending antidiagonals),
A085527 (1st superdiagonal),
A085528 (1st subdiagonal),
A085532,
A099753.
-
A[n_,k_]:=(n+k)^n; Join[{1},Table[A[n-k,k],{n,9},{k,0,n}]]//Flatten
Comments