A176487
Triangle read by rows: T(n,k) = binomial(n,k) + A008292(n+1,k+1) - 1.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 29, 71, 29, 1, 1, 61, 311, 311, 61, 1, 1, 125, 1205, 2435, 1205, 125, 1, 1, 253, 4313, 15653, 15653, 4313, 253, 1, 1, 509, 14635, 88289, 156259, 88289, 14635, 509, 1, 1, 1021, 47875, 455275, 1310479, 1310479, 455275, 47875, 1021, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 13, 13, 1;
1, 29, 71, 29, 1;
1, 61, 311, 311, 61, 1;
1, 125, 1205, 2435, 1205, 125, 1;
1, 253, 4313, 15653, 15653, 4313, 253, 1;
1, 509, 14635, 88289, 156259, 88289, 14635, 509, 1;
1, 1021, 47875, 455275, 1310479, 1310479, 455275, 47875, 1021, 1;
-
A176487:= func< n, k | Binomial(n, k) + EulerianNumber(n+1, k) - 1 >;
[A176487(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 31 2024
-
A176487 := proc(n,k)
binomial(n,k)+A008292(n+1,k+1)-1 ;
end proc: # R. J. Mathar, Jun 16 2015
-
Needs["Combinatorica`"];
T[n_, k_, 0]:= Binomial[n, k];
T[n_, k_, 1]:= Eulerian[1 + n, k];
T[n_, k_, q_]:= T[n,k,q] = T[n,k,q-1] + T[n,k,q-2] - 1;
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten
-
# from sage.all import * # (use for Python)
from sage.combinat.combinat import eulerian_number
def A176487(n,k): return binomial(n,k) +eulerian_number(n+1,k) -1
print(flatten([[A176487(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Dec 31 2024
A001244
Eulerian numbers (Euler's triangle: column k=8 of A008292, column k=7 of A173018).
Original entry on oeis.org
1, 502, 47840, 2203488, 66318474, 1505621508, 27971176092, 447538817472, 6382798925475, 83137223185370, 1006709967915228, 11485644635009424, 124748182104463860, 1300365805079109480, 13093713503185076040
Offset: 8
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 2601.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 8..1000
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Index entries for linear recurrences with constant coefficients, signature (120, -6930, 256564, -6843837, 140161164, -2293167668, 30793317984, -346027498674, 3301174490432, -27034426023228, 191677191769368, -1184495927428914, 6413285791562760, -30547549870770240, 128399094121475760, -477325107218885805, 1571764443755152680, -4588173158058601250, 11875425392771515860, -27240699344951953809, 55318442559624109580, -99273350219483495580, 157041371328829338576, -218253110396224153888, 265336916554318663296, -280638192440433919872, 256449901319079809536, -200704456428999204096, 133025721255740648448, -73584771640934648832, 33313567375875428352, -12012672014150270976, 3315383509586411520, -657169361790566400, 83234996748288000, -5056584744960000).
Cf.
A008292 (classic version of Euler's triangle used by Comtet (1974).)
Cf.
A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).)
-
A001244:= func< n | EulerianNumber(n,7) >;
[A001244(n): n in [8..40]]; // G. C. Greubel, Dec 31 2024
-
k = 8; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 15}] (* Michael De Vlieger, Aug 04 2015, after PARI *)
-
A001244(n)=8^(n+8-1)+sum(i=1,8-1,(-1)^i/i!*(8-i)^(n+8-1)*prod(j=1,i,n+8+1-j))
-
from sage.combinat.combinat import eulerian_number
print([eulerian_number(n,7) for n in range(8,41)]) # G. C. Greubel, Dec 31 2024
A154694
Triangle read by rows: T(n,k) = ((3/2)^k*2^n + (2/3)^k*3^n)*A008292(n+1,k+1).
Original entry on oeis.org
2, 5, 5, 13, 48, 13, 35, 330, 330, 35, 97, 2028, 4752, 2028, 97, 275, 11970, 54360, 54360, 11970, 275, 793, 69840, 557388, 1043712, 557388, 69840, 793, 2315, 407550, 5409180, 16868520, 16868520, 5409180, 407550, 2315, 6817, 2388516, 51011136, 247761072, 404844480, 247761072, 51011136, 2388516, 6817
Offset: 0
Triangle begins as:
2;
5, 5;
13, 48, 13;
35, 330, 330, 35;
97, 2028, 4752, 2028, 97;
275, 11970, 54360, 54360, 11970, 275;
793, 69840, 557388, 1043712, 557388, 69840, 793;
2315, 407550, 5409180, 16868520, 16868520, 5409180, 407550, 2315;
-
A154694:= func< n,k | (2^(n-k)*3^k+2^k*3^(n-k))*EulerianNumber(n+1, k) >;
[A154694(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
-
A154694 := proc(n,m)
(3^m*2^(n-m)+2^m*3^(n-m))*A008292(n+1,m+1) ;
end proc:
seq(seq( A154694(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Mar 11 2024
-
T[n_, k_, p_, q_] := (p^(n - k)*q^k + p^k*q^(n - k))*Eulerian[n+1,k];
Table[T[n,k,2,3], {n,0,12}, {k,0,n}]//Flatten
-
from sage.all import *
from sage.combinat.combinat import eulerian_number
def A154694(n,k): return (pow(2,n-k)*pow(3,k)+pow(2,k)*pow(3,n-k))*eulerian_number(n+1,k)
print(flatten([[A154694(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025
Definition simplified by the Assoc. Eds. of the OEIS, Jun 07 2010
A055325
Matrix inverse of Euler's triangle A008292.
Original entry on oeis.org
1, -1, 1, 3, -4, 1, -23, 33, -11, 1, 425, -620, 220, -26, 1, -18129, 26525, -9520, 1180, -57, 1, 1721419, -2519664, 905765, -113050, 5649, -120, 1, -353654167, 517670461, -186123259, 23248085, -1166221, 25347, -247, 1, 153923102577
Offset: 1
Triangle starts:
[1] 1;
[2] -1, 1;
[3] 3, -4, 1;
[4] -23, 33, -11, 1;
[5] 425, -620, 220, -26, 1;
[6] -18129, 26525, -9520, 1180, -57, 1;
[7] 1721419, -2519664, 905765, -113050, 5649, -120, 1;
[8]-353654167, 517670461, -186123259, 23248085, -1166221, 25347, -247, 1;
-
A008292:= proc(n, k) option remember;
if k < 1 or k > n then 0
elif k = 1 or k = n then 1
else (k*procname(n-1, k)+(n-k+1)*procname(n-1, k-1))
fi
end proc:
T:= Matrix(10,10,(i,j) -> A008292(i,j)):
R:= T^(-1):
seq(seq(R[i,j],j=1..i),i=1..10); # Robert Israel, May 25 2018
-
m = 10 (*rows*);
t[n_, k_] := Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j, 0, k}];
M = Array[t, {m, m}] // Inverse;
Table[M[[i, j]], {i, 1, m}, {j, 1, i}] // Flatten (* Jean-François Alcover, Mar 05 2019 *)
T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = (n-k+1) T[n-1, k-1] + k T[n-1, k]; T[n_, k_] := 0;(*A008292*)
iT[n_, n_]/;n>=1 := 1; iT[n_, k_]/;1<=kA055325*)
Flatten@Table[iT[n, k], {n, 1, 9}, {k, 1, n}] (* Oliver Seipel, Feb 10 2025 *)
A141686
Triangle read by rows: T(n, k) = binomial(n-1, k-1)*A008292(n, k).
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 33, 33, 1, 1, 104, 396, 104, 1, 1, 285, 3020, 3020, 285, 1, 1, 720, 17865, 48320, 17865, 720, 1, 1, 1729, 90153, 546665, 546665, 90153, 1729, 1, 1, 4016, 409024, 4941104, 10933300, 4941104, 409024, 4016, 1, 1, 9117, 1722240, 38236128, 165104604, 165104604, 38236128, 1722240, 9117, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 33, 33, 1;
1, 104, 396, 104, 1;
1, 285, 3020, 3020, 285, 1;
1, 720, 17865, 48320, 17865, 720, 1;
1, 1729, 90153, 546665, 546665, 90153, 1729, 1;
1, 4016, 409024, 4941104, 10933300, 4941104, 409024, 4016, 1;
1, 9117, 1722240, 38236128, 165104604, 165104604, 38236128, 1722240, 9117, 1;
-
a141686 n k = a141686_tabl !! (n-1) !! (k-1)
a141686_row n = a141686_tabl !! (n-1)
a141686_tabl = zipWith (zipWith (*)) a007318_tabl a008292_tabl
-- Reinhard Zumkeller, Apr 16 2014
-
A141686:= func< n, k | Binomial(n-1, k-1)*EulerianNumber(n, k-1) >;
[A141686(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Dec 31 2024
-
(* Recurrence for A008292 *)
f[n_, k_]:= If[k==1||k==n,1, (n-k+1)*f[n-1,k-1] + k*f[n-1,k]];
Table[f[n, k]*Binomial[n-1,k-1], {n,12}, {k,n}]//Flatten
(* Second program *)
Needs["Combinatorica`"];
A141686[n_, k_]:= Binomial[n-1,k-1]*Eulerian[n,k-1];
Table[A141686[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Dec 31 2024 *)
-
# or SageMath
from sage.combinat.combinat import eulerian_number
def A141686(n,k): return binomial(n-1,k-1)*eulerian_number(n,k-1)
print(flatten([[A141686(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Dec 31 2024
keyword:tabl inserted, indices corrected by the Assoc. Eds. of the OEIS, Jun 30 2010
A168562
Sum of squares of Eulerian numbers in row n of triangle A008292 with a(0)=1.
Original entry on oeis.org
1, 1, 2, 18, 244, 5710, 188908, 8702820, 524888040, 40393084950, 3853034107900, 446671026849916, 61824801560228056, 10072685383683311116, 1907978676359896992824, 415795605119514578204616, 103294156408291202467520976, 29018125910193347265466916070
Offset: 0
a(1) = 1 = 1;
a(2) = 1 + 1 = 2;
a(3) = 1 + 4^2 + 1 = 18;
a(4) = 1 + 11^2 + 11^2 + 1 = 244;
a(5) = 1 + 26^2 + 66^2 + 26^2 + 1 = 5710;
a(6) = 1 + 57^2 + 302^2 + 302^2 + 57^2 + 1 = 188908.
-
a:= n-> add(combinat[eulerian1](n, k)^2, k=0..n):
seq(a(n), n=0..18); # Alois P. Heinz, Sep 10 2020
-
{a(n)=sum(k=0,n,sum(j=0, k, (-1)^j*(k-j)^n*binomial(n+1, j))^2)}
A176490
Triangle T(n,k) = A008292(n+1,k+1) + A060187(n+1,k+1)- 1 read along rows 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 33, 33, 1, 1, 101, 295, 101, 1, 1, 293, 1983, 1983, 293, 1, 1, 841, 11733, 25963, 11733, 841, 1, 1, 2425, 64949, 275341, 275341, 64949, 2425, 1, 1, 7053, 346219, 2573521, 4831203, 2573521, 346219, 7053, 1, 1, 20685, 1804179, 22163163
Offset: 0
1;
1, 1;
1, 9, 1;
1, 33, 33, 1;
1, 101, 295, 101, 1;
1, 293, 1983, 1983, 293, 1;
1, 841, 11733, 25963, 11733, 841, 1;
1, 2425, 64949, 275341, 275341, 64949, 2425, 1;
1, 7053, 346219, 2573521, 4831203, 2573521, 346219, 7053, 1;
1, 20685, 1804179, 22163163, 70723647, 70723647, 22163163, 1804179, 20685, 1;
1, 61073, 9268777, 180504391, 916661395, 1542816715, 916661395, 180504391, 9268777, 61073, 1;
-
A176490 := proc(n,k)
A008292(n+1,k+1)+A060187(n+1,k+1)-1 ;
end proc: # R. J. Mathar, Jun 16 2015
-
(*A060187*)
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
<< DiscreteMath`Combinatorica`;
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Eulerian[1 + n, m];
t[n_, m_, 2] := f[n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
A065826
Triangle with T(n,k) = k*E(n,k) where E(n,k) are Eulerian numbers A008292.
Original entry on oeis.org
1, 1, 2, 1, 8, 3, 1, 22, 33, 4, 1, 52, 198, 104, 5, 1, 114, 906, 1208, 285, 6, 1, 240, 3573, 9664, 5955, 720, 7, 1, 494, 12879, 62476, 78095, 25758, 1729, 8, 1, 1004, 43824, 352936, 780950, 529404, 102256, 4016, 9, 1, 2026, 143520, 1820768, 6551770, 7862124, 3186344, 382720, 9117, 10
Offset: 1
Rows start:
1;
1, 2;
1, 8, 3;
1, 22, 33, 4;
1, 52, 198, 104, 5;
1, 114, 906, 1208, 285, 6;
1, 240, 3573, 9664, 5955, 720, 7;
1, 494, 12879, 62476, 78095, 25758, 1729, 8;
etc.
- Alois P. Heinz, Rows n = 1..141, flattened
- Ron M. Adin, Sergi Elizalde, Victor Reiner, Yuval Roichman, Cyclic descent extensions and distributions, Semantic Sensor Networks Workshop 2018, CEUR Workshop Proceedings (2018) Vol. 2113.
- Ron M. Adin, Victor Reiner, Yuval Roichman, On cyclic descents for tableaux, arXiv:1710.06664 [math.CO], 2017.
-
Flat(List([1..10],n->List([1..n],k->Sum([0..k],j->k*(-1)^j*(k-j)^n*Binomial(n+1,j))))); # Muniru A Asiru, Mar 09 2019
-
T:=(n,k)->add(k*(-1)^j*(k-j)^n*binomial(n+1,j),j=0..k): seq(seq(T(n,k),k=1..n),n=1..10); # Muniru A Asiru, Mar 09 2019
-
Array[Range[Length@ #] # &@ CoefficientList[(1 - x)^(# + 1)*PolyLog[-#, x]/x, x] &, 10] (* Michael De Vlieger, Sep 24 2018, after Vaclav Kotesovec at A008292 *)
A087674
Value of the n-th Eulerian polynomial (cf. A008292) evaluated at x=-2.
Original entry on oeis.org
1, 1, -1, -3, 15, 21, -441, 477, 19935, -101979, -1150281, 14838957, 60479055, -2328851979, 3529587879, 403992301437, -3333935426625, -72778393505979, 1413503392326039, 10851976875907917, -554279405351601105, 713848745428080021
Offset: 0
G.f. = 1 + x - x^2 - 3*x^3 + 15*x^4 + 21*x^5 - 441*x^6 + 477*x^7 + 19935*x^8 + ... - _Michael Somos_, Aug 27 2018
-
Table[-3^(n+1)/2*PolyLog[-n, -2], {n, 0, 21}] (* Jean-François Alcover, Apr 26 2013 *)
a[ n_] := If[ n < 0, 0, n! 3/2 SeriesCoefficient[ 1 / (1 + Exp[-3 x] / 2), {x, 0, n}]]; (* Michael Somos, Aug 27 2018 *)
-
{a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1+3*k*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 20 2011 */
-
x='x+O('x^66); Vec(serlaplace( 3*exp(x)/(2*exp(x)+exp(-2*x)) )) \\ Joerg Arndt, Apr 21 2013
-
{a(n) = if( n<0, 0, n! * 3/2 * polcoeff( 1 / (1 + exp( -3*x + x * O(x^n)) / 2), n))}; /* Michael Somos, Aug 27 2018 */
A104098
a(n) = Sum_{k=1..n} binomial(n-1, k-1)*A008292(n, k) for n >= 1.
Original entry on oeis.org
1, 2, 10, 68, 606, 6612, 85492, 1277096, 21641590, 410144180, 8595133548, 197346180792, 4926442358124, 132847425483528, 3848398710032616, 119187270233781456, 3929892162743796390, 137444081992905303540, 5082053733073190713660, 198081684441819323760920
Offset: 1
1 = 1*1
2 = 1*1 + 1*1
10 = 1*1 + 2*4 + 1*1
68 = 1*1 + 3*11 + 3*11 + 1*1
...
-
a := n -> local k; add(binomial(n - 1, k - 1) * combinat:-eulerian1(n, k - 1), k = 1..n): seq(a(n), n = 1..20); # Peter Luschny, Oct 29 2023
-
Table[Sum[Binomial[n-1,k-1] * Sum[(-1)^j * (k-j)^n * Binomial[n+1,j], {j, 0, k}], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 09 2020 *)
Comments