cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 83 results. Next

A000220 Number of asymmetric trees with n nodes (also called identity trees).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 3, 6, 15, 29, 67, 139, 310, 667, 1480, 3244, 7241, 16104, 36192, 81435, 184452, 418870, 955860, 2187664, 5025990, 11580130, 26765230, 62027433, 144133676, 335731381, 783859852, 1834104934, 4300433063, 10102854473, 23778351222
Offset: 1

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 330.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 301 and 562.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 66, Eq. (3.3.22).
  • D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88 describes methodology for generating similar sequence rapidly.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • A. J. Schwenk, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(
          b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
        end:
    a:= n-> b(n)-(add(b(j)*b(n-j), j=0..n)+
           `if`(irem(n, 2)=0, b(n/2), 0))/2:
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 24 2015
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, -s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ]-Sum[ a[ j ]a[ i-j ], {j, 1, i/2} ]+If[ OddQ[ i ], 0, a[ i/2 ](a[ i/2 ]-1)/2 ], {i, 1, 50} ] (* Robert A. Russell *)

Formula

G.f.: A(x)-A^2(x)/2-A(x^2)/2, where A(x) is g.f. for A004111.
a(n) ~ c * d^n / n^(5/2), where d = A246169 = 2.51754035263200389079535..., c = 0.29938828746578432274375484519722721162... . - Vaclav Kotesovec, Aug 25 2014

A003400 Number of asymmetric (not necessarily connected) graphs with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 8, 152, 3696, 135004, 7971848, 805364776, 144123121972
Offset: 1

Views

Author

Keywords

Comments

Number of simple graphs g on n nodes with |Aut(g)| = 1.

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 220, Section P3.4.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A124059 (connected simple asymmetric graphs).
Cf. A275867 (disconnected simple asymmetric graphs).
Cf. A000088 (simple graphs).

Programs

  • nauty
    for n in {1..10}; do geng -q ${n} | countg -q -a1 | grep altogether | awk '{print $1}'; done # - Sean A. Irvine, Apr 22 2015

Formula

a(n) = A124059(n) + A275867(n).

Extensions

a(8) and a(9) from Eric W. Weisstein, Jun 09 2004
a(10) and a(11) from Zoran Maksimovic, Vladeta Jovovic, Jan 21 2005
a(12) from Sean A. Irvine, Apr 22 2015

A192517 Table read by antidiagonals: T(n,k) = number of multigraphs with n vertices and k edges, with no loops allowed (n >= 1, k >= 0).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 3, 6, 4, 1, 0, 1, 1, 3, 7, 11, 5, 1, 0, 1, 1, 3, 8, 17, 18, 7, 1, 0, 1, 1, 3, 8, 21, 35, 32, 8, 1, 0, 1, 1, 3, 8, 22, 52, 76, 48, 10, 1, 0, 1, 1, 3, 8, 23, 60, 132, 149, 75, 12, 1, 0
Offset: 1

Views

Author

Alberto Tacchella, Jul 03 2011

Keywords

Comments

Rows converge to sequence A050535, i.e. T(n,k) = A050535(k) for n >= 2k.

Examples

			Table begins:
[1,0,0,0,0,0,0,0,0,...],
[1,1,1,1,1,1,1,1,1,...],
[1,1,2,3,4,5,7,8,10,...],
[1,1,3,6,11,18,32,48,75,...],
[1,1,3,7,17,35,76,149,291,...],
[1,1,3,8,21,52,132,313,741,...],
[1,1,3,8,22,60,173,471,1303,...],
[1,1,3,8,23,64,197,588,1806,...],
...
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 171.

Crossrefs

Cf. A008406, A191646, A003082 (row 4), A014395 (row 5), A014396 (row 6).

Programs

  • PARI
    \\ See A191646 for G function.
    R(n)={Mat(vectorv(n, k, concat([1], G(k, n-1))))}
    { my(A=R(10)); for(n=1, #A, for(k=1, #A, print1(A[n,k], ", "));print) } \\ Andrew Howroyd, May 14 2018

A370167 Irregular triangle read by rows where T(n,k) is the number of unlabeled simple graphs covering n vertices with k = 0..binomial(n,2) edges.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 1, 1, 0, 0, 0, 1, 4, 5, 5, 4, 2, 1, 1, 0, 0, 0, 1, 3, 9, 15, 20, 22, 20, 14, 9, 5, 2, 1, 1, 0, 0, 0, 0, 1, 6, 20, 41, 73, 110, 133, 139, 126, 95, 64, 40, 21, 10, 5, 2, 1, 1, 0, 0, 0, 0, 1, 3, 15, 50, 124, 271, 515, 832, 1181, 1460, 1581, 1516, 1291, 970, 658, 400, 220, 114, 56, 24, 11, 5, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2024

Keywords

Examples

			Triangle begins:
  1
  0
  0  1
  0  0  1  1
  0  0  1  2  2  1  1
  0  0  0  1  4  5  5  4  2  1  1
  0  0  0  1  3  9 15 20 22 20 14  9  5  2  1  1
		

Crossrefs

Column sums are A000664.
Row sums are A002494.
This is the covering case of A008406, labeled A084546.
The labeled version is A054548, row sums A006129, column sums A121251.
The connected case is A054924, row sums A001349, column sums A002905.
The labeled connected case is A062734, with loops A369195.
The connected case with loops is A283755, row sums A054921.
The labeled version w/ loops is A369199, row sums A322661, col sums A173219.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}],{k}],Union@@#==Range[n]&]]], {n,0,5},{k,0,Binomial[n,2]}]
  • PARI
    \\ G(n) defined in A008406.
    row(n)={Vecrev(G(n)-if(n>0, G(n-1)), binomial(n,2)+1)}
    { for(n=0, 7, print(row(n))) } \\ Andrew Howroyd, Feb 19 2024

Extensions

a(42) onwards from Andrew Howroyd, Feb 19 2024

A000676 Number of centered trees with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 7, 12, 27, 55, 127, 284, 682, 1618, 3979, 9823, 24722, 62651, 160744, 415146, 1081107, 2831730, 7462542, 19764010, 52599053, 140580206, 377244482, 1016022191, 2745783463, 7443742141, 20239038700, 55178647926, 150820588425, 413226000775
Offset: 0

Views

Author

Keywords

Comments

A tree has either a center or a bicenter and either a centroid or a bicentroid. (These terms were introduced by Jordan.)
If the number of edges in a longest path in the tree is 2m, then the middle node in the path is the unique center, otherwise the two middle nodes in the path are the unique bicenters.
On the bottom of first page 266 of article Cayley (1881) is a table of A000676 and A000677 for n = 1..13. - Michael Somos, Aug 20 2018

Examples

			G.f. = 1 + x + x^3 + x^4 + 2*x^5 + 3*x^6 + 7*x^7 + 12*x^8 + 27*x^9 + 55*x^10 + ... - _Michael Somos_, Aug 20 2018
		

References

  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 49.
  • F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1994; pp. 35, 36.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A102911 (trees with a bicentroid), A027416 (trees with a centroid), A000677 (trees with a bicenter), A000055 (trees), A000081 (rooted trees).

Programs

  • Mathematica
    (* See link. *)

Formula

a(n) + A000677(n) = A000055(n).

A275421 Triangle read by rows: T(n,k) = number of graphs with n edges and k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 12, 8, 4, 1, 1, 30, 23, 9, 4, 1, 1, 79, 57, 26, 9, 4, 1, 1, 227, 160, 68, 27, 9, 4, 1, 1, 710, 456, 197, 71, 27, 9, 4, 1, 1, 2322, 1402, 567, 208, 72, 27, 9, 4, 1, 1, 8071, 4468, 1748, 604, 211, 72, 27, 9, 4, 1, 1, 29503, 15071, 5555, 1874
Offset: 1

Views

Author

R. J. Mathar, Jul 27 2016

Keywords

Comments

Multiset transformation of A002905.

Examples

			      1
      1     1
      3     1     1
      5     4     1     1
     12     8     4     1     1
     30    23     9     4     1     1
     79    57    26     9     4     1     1
    227   160    68    27     9     4     1     1
    710   456   197    71    27     9     4     1     1
   2322  1402   567   208    72    27     9     4     1     1
   8071  4468  1748   604   211    72    27     9     4     1     1
  29503 15071  5555  1874   615   212    72    27     9     4     1
		

Crossrefs

Cf. A002905 (column 1), A000664 (row sums).

Programs

  • Mathematica
    rows = 12;
    A002905 = Import["https://oeis.org/A002905/b002905.txt", "Table"][[All, 2]];
    gf = Product[(1 - y x^j)^-A002905[[j+1]], {j, 1, rows}];
    Rest[CoefficientList[#, y]]& /@ Rest[CoefficientList[gf + O[x]^(rows+1), x]] // Flatten (* Jean-François Alcover, May 09 2019, after Alois P. Heinz *)

Formula

T(n,1) = A002905(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1
G.f.: Product_{j>=1} (1-y*x^j)^(-A002905(j)). - Alois P. Heinz, Apr 13 2017

A000608 Number of connected partially ordered sets with n unlabeled elements.

Original entry on oeis.org

1, 1, 1, 3, 10, 44, 238, 1650, 14512, 163341, 2360719, 43944974, 1055019099, 32664984238, 1303143553205, 66900392672168, 4413439778321689
Offset: 0

Author

Keywords

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • G. Melançon, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Inverse Euler transform of A000112.
Cf. A263864 (multiset transform), A342500 (refined by rank).

Programs

Extensions

More terms from Christian G. Bower, who pointed out connection with A000112, Jan 21 1998 and Dec 12 2001
More terms from Vladeta Jovovic, Jan 04 2006; corrected Jan 15 2006

A095133 Triangle of numbers of forests on n nodes containing k trees.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 1, 11, 11, 7, 4, 2, 1, 1, 23, 23, 14, 8, 4, 2, 1, 1, 47, 46, 29, 15, 8, 4, 2, 1, 1, 106, 99, 60, 32, 16, 8, 4, 2, 1, 1, 235, 216, 128, 66, 33, 16, 8, 4, 2, 1, 1, 551, 488, 284, 143, 69, 34, 16, 8, 4, 2, 1, 1, 1301, 1121, 636, 315, 149, 70, 34, 16, 8, 4, 2, 1, 1
Offset: 1

Author

Eric W. Weisstein, May 29 2004

Keywords

Comments

Row sums are A005195.
For k > n/2, T(n,k) = T(n-1,k-1). - Geoffrey Critzer, Oct 13 2012

Examples

			Triangle begins:
    1;
    1,  1;
    1,  1,  1;
    2,  2,  1,  1;
    3,  3,  2,  1,  1;
    6,  6,  4,  2,  1, 1;
   11, 11,  7,  4,  2, 1, 1;
   23, 23, 14,  8,  4, 2, 1, 1;
   47, 46, 29, 15,  8, 4, 2, 1, 1;
  106, 99, 60, 32, 16, 8, 4, 2, 1, 1;
  ...
		

Crossrefs

Cf. A005195 (row sums), A005196, A106240, A000055 (first column), A274937 (2nd column), A105821.
Limiting sequence of reversed rows gives A215930.
Reflected table is A136605. - Alois P. Heinz, Apr 11 2014

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if` (n<=1, n,
          (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
        end:
    t:= proc(n) option remember; local k; `if` (n=0, 1,
          b(n)-(add(b(k)*b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2)
        end:
    g:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(g(n-i*j, i-1, p-j) *
           binomial(t(i)+j-1, j), j=0..min(n/i, p)))))
        end:
    a:= (n, k)-> g(n, n, k):
    seq(seq(a(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Aug 20 2012
  • Mathematica
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);ft=Table[a[i]-Sum[a[j]a[i-j],{j,1,i/2}]+If[OddQ[i],0,a[i/2](a[i/2]+1)/2],{i,1,nn}];CoefficientList[Series[Product[1/(1-y x^i)^ft[[i]],{i,1,nn}],{x,0,20}],{x,y}]//Grid (* Geoffrey Critzer, Oct 13 2012, after code given by Robert A. Russell in A000055 *)

Formula

T(n, k) = sum over the partitions of n, 1M1 + 2M2 + ... + nMn, with exactly k parts, of Product_{i=1..n} binomial(A000055(i) + Mi - 1, Mi). - Washington Bomfim, May 12 2005

Extensions

More terms from Vladeta Jovovic, Jun 03 2004

A070166 Irregular triangle read by rows giving T(n,k) = number of rooted graphs on n + 1 nodes with k edges (n >= 0, 0 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 6, 4, 2, 1, 1, 2, 5, 11, 17, 18, 17, 11, 5, 2, 1, 1, 2, 5, 13, 29, 52, 76, 94, 94, 76, 52, 29, 13, 5, 2, 1, 1, 2, 5, 14, 35, 83, 173, 308, 487, 666, 774, 774, 666, 487, 308, 173, 83, 35, 14, 5, 2, 1, 1, 2, 5, 14, 37, 98, 252, 585, 1239, 2396, 4135, 6340
Offset: 0

Author

Keywords

Comments

T(n,k) is also the number of graphs with n nodes and k edges which may contain loops. (Delete the root node and change every edge leading to it into a loop.)
T(n,k) is also the number of symmetric relations with n points and k relations.

Examples

			Triangle begins:
1;
1, 1;
1, 2, 2, 1;
1, 2, 4, 6, 4, 2, 1;
1, 2, 5, 11, 17, 18, 17, 11, 5, 2, 1; <- gives either the numbers of rooted graphs on 5 nodes, or the numbers of graphs with loops on 4 nodes; with from 0 to 10 edges
1, 2, 5, 13, 29, 52, 76, 94, 94, 76, 52, 29, 13, 5, 2, 1;
...
		

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Programs

  • Mathematica
    Join[{{1},{1,1}},CoefficientList[Table[CycleIndex[Join[PairGroup[SymmetricGroup[n]],Permutations[Range[Binomial[n,2]+1,Binomial[n,2]+n]],2],s]/.Table[s[i]->1+x^i,{i,1,n^2-n}],{n,2,7}],x]]//Grid  (* Geoffrey Critzer, Oct 01 2012 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/g]^g, {j, 1, i - 1}], {i, 2, Length[v]}]*Product[c = v[[i]]; t[c]^Quotient[c + 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
    row[n_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, 1 + x^# &], {p, IntegerPartitions[n]}]; s/n!] // Expand // CoefficientList[#, x] &
    row /@ Range[0, 7] // Flatten (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
    G(n, A=0) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i+A)); s/n!}
    { for(n=0, 7, print(Vecrev(G(n)))) } \\ Andrew Howroyd, Oct 23 2019, updated Jan 09 2024

Extensions

Offset changed by Andrew Howroyd, Oct 23 2019

A001433 Number of graphs with n nodes and n-1 edges.

Original entry on oeis.org

1, 1, 1, 3, 6, 15, 41, 115, 345, 1103, 3664, 12763, 46415, 175652, 691001, 2821116, 11932174, 52211412, 236007973, 1100528508, 5287050500, 26134330813, 132760735671, 692294900849, 3701754158688, 20275893222445, 113657560920970, 651449039159673, 3814790900995022, 22805438484189851
Offset: 1

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008406.

Programs

  • Mathematica
    Needs["Combinatorica`"]
    Table[ NumberOfGraphs[n, n-1], {n, 1, 25}] (* Robert G. Wilson v *)
    (* Second program (not needing Combinatorica): *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]* v[[j]]/g]^g, {j, 1, i - 1}], {i, 2, Length[v]}]*Product[c = v[[i]]; t[c]^Quotient[c - 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
    a[n_] := a[n] = Module[{s = 0}, Do[s += permcount[p]*edges[p, 1 + x^# &], {p, IntegerPartitions[n]}]; s/n!] // Expand // SeriesCoefficient[#, {x, 0, n-1}]&;
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 35}] (* Jean-François Alcover, Aug 18 2022, after Andrew Howroyd in A008406 *)

Extensions

More terms from Vladeta Jovovic, Jan 15 2000
Previous Showing 31-40 of 83 results. Next