cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 76 results. Next

A226255 Number of ways of writing n as the sum of 11 triangular numbers.

Original entry on oeis.org

1, 11, 55, 176, 440, 957, 1848, 3245, 5412, 8580, 12892, 18888, 26895, 36916, 50160, 66935, 86658, 111870, 142582, 177320, 221100, 272690, 329065, 399102, 480040, 566808, 672969, 793760, 920326, 1074040, 1248412, 1425974, 1640595, 1882145, 2123385, 2418339, 2743928, 3062895, 3453978, 3880855
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2013

Keywords

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Formula

G.f. is 11th power of g.f. for A010054.
a(0) = 1, a(n) = (11/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 11*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

A045823 a(n) = sigma_3(2*n+1).

Original entry on oeis.org

1, 28, 126, 344, 757, 1332, 2198, 3528, 4914, 6860, 9632, 12168, 15751, 20440, 24390, 29792, 37296, 43344, 50654, 61544, 68922, 79508, 95382, 103824, 117993, 137592, 148878, 167832, 192080, 205380, 226982, 260408, 276948, 300764, 340704, 357912
Offset: 0

Views

Author

Keywords

Examples

			q + 28*q^3 + 126*q^5 + 344*q^7 + 757*q^9 + 1332*q^11 + 2198*q^13 + ...
		

Crossrefs

Equals A045819/2.
Bisection of A001158.

Programs

  • Magma
    [DivisorSigma(3, 2*n+1): n in [0..40]]; // Vincenzo Librandi, Jun 02 2019
  • Maple
    A045823 := proc(n)
        numtheory[sigma][3](2*n+1) ;
    end proc:
    seq(A045823(n),n=0..30) ; # R. J. Mathar, Nov 25 2018
  • Mathematica
    DivisorSigma[3, Range[1, 75, 2]] (* Harvey P. Dale, Jan 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sigma(2 * n + 1, 3))} /* Michael Somos, Nov 29 2007 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, n *= 2; A = x * O(x^n); polcoeff( (eta(x^2 + A)^24 + eta(x + A)^16 * eta(x^4 + A)^8) / (2 * eta(x + A)^8 * eta(x^2 + A)^8), n))} /* Michael Somos, Nov 29 2007 */
    

Formula

Expansion of q^(-1) * ( E_4(q) - 9 * E_4(q^2) + 8 * E_4(q^4) ) / 240 in powers of q^2. - Michael Somos, Nov 29 2007
Expansion of q^(-1) * (eta(q^2)^24 + eta(q)^16 * eta(q^4)^8) / (2 * eta(q)^8 * eta(q^2)^8) in powers of q^2. - Michael Somos, Nov 29 2007
a(n) = b(2*n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = ((p^3)^(e+1) - 1) / (p^3 - 1) if p>2. - Michael Somos, Nov 29 2007
G.f.: (theta_3(q)^8 - theta_4(q)^8) / (32*q) = Sum_{n>=0} sigma_3(2*n+1)*q^(2*n). - Paul D. Hanna, Jun 02 2018
Sum_{k=0..n} a(k) ~ (15*zeta(4)/8) * n^4. - Amiram Eldar, Dec 12 2023

Extensions

More terms from Benoit Cloitre, Apr 12 2003

A109506 Expansion of (1 - phi(-q)^4)/ 8 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -3, 4, -3, 6, -12, 8, -3, 13, -18, 12, -12, 14, -24, 24, -3, 18, -39, 20, -18, 32, -36, 24, -12, 31, -42, 40, -24, 30, -72, 32, -3, 48, -54, 48, -39, 38, -60, 56, -18, 42, -96, 44, -36, 78, -72, 48, -12, 57, -93, 72, -42, 54, -120, 72, -24, 80, -90, 60, -72, 62, -96, 104, -3, 84, -144, 68, -54, 96, -144, 72
Offset: 1

Views

Author

Michael Somos, Jun 30 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by xi(n) in Glaisher 1907. - Michael Somos, May 17 2013

Examples

			q - 3*q^2 + 4*q^3 - 3*q^4 + 6*q^5 - 12*q^6 + 8*q^7 - 3*q^8 + 13*q^9 + ...
		

References

  • G. Chrystal, Algebra: An elementary text-book for the higher classes of secondary schools and for colleges, 6th ed, Chelsea Publishing Co., New York 1959 Part II, p. 346 Exercise XXI(18). MR0121327 (22 #12066).
  • J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 8).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n Sum[ If[ Mod[ d, 4] == 0, 0, d], {d, Divisors@n}]] (* Michael Somos, May 17 2013 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, if( d%4, d)))}
    
  • PARI
    {a(n) = local(A); if( n<1, 0, A = x * O(x^n); -1/8 * polcoeff( eta(x + A)^8 / eta(x^2 + A)^4, n))}

Formula

Expansion of (1 - eta(q)^8 / eta(q^2)^4) / 8 in powers of q.
a(n) = Sum_{d divides n} (-1)^(n/d + d) * d [Glaisher].
Multiplicative with a(2^e) = -3, if e>0. a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
G.f.: Sum_{k>0} k * (x^k / (1 - x^k) - 6 * x^(2*k) / (1 - x^(2*k)) + 8 * x^(4*k) / (1 - x^(4*k))).
G.f.: Sum_{k>0} -(-x)^k / (1 + x^k)^2 = Sum_{k>0} - k * (-x)^k / (1 + x^k).
a(n) = -(-1)^n * A046897(n). a(n) = -A096727(n) / 8 unless n=0. a(2*n) = -3 * A000593(n). a(2*n + 1) = A008438(n). a(4*n + 1) = A112610(n). a(4*n + 3) = A097723(n).
Dirichlet g.f.: (1 - 1/2^(s-2)) * (1 - 1/2^(s-1)) * zeta(s-1) * zeta(s). - Amiram Eldar, Sep 12 2023

A247820 Numbers k such that sigma(2*k-1) is a prime p.

Original entry on oeis.org

5, 13, 145, 365, 841, 1201, 1741, 2521, 3961, 5101, 7813, 8581, 13945, 14281, 14965, 41761, 42925, 73345, 139921, 229165, 245701, 265721, 276025, 289561, 298765, 341965, 351961, 353641, 367225, 414961, 595141, 601705, 676285, 697381, 711625, 740545, 942565
Offset: 1

Views

Author

Jaroslav Krizek, Sep 24 2014

Keywords

Comments

Supersequence of A247789.
Corresponding values of primes p for a(n) are A008438(a(n)-1) or A247837.

Examples

			Number 13 is in sequence because sigma(2*13-1) = sigma(25) = 31 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10000000] | IsPrime(SumOfDivisors(2*n-1))];
    
  • PARI
    for(n=1,10^7,if(isprime(sigma(2*n-1)),print1(n,", "))) \\ Derek Orr, Sep 25 2014

A340949 Number of ways to write n as an ordered sum of 4 nonzero triangular numbers.

Original entry on oeis.org

1, 0, 4, 0, 6, 4, 4, 12, 1, 16, 6, 16, 12, 12, 22, 8, 36, 4, 30, 24, 21, 36, 18, 36, 28, 48, 16, 44, 36, 44, 48, 36, 46, 40, 72, 20, 73, 48, 54, 72, 42, 68, 56, 84, 50, 72, 78, 56, 84, 84, 62, 112, 60, 60, 110, 84, 97, 72, 120, 76, 116, 84, 72, 144, 102, 104, 96, 108, 102, 156, 102, 92
Offset: 4

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; local r, t, d; r, t, d:= $0..2;
          if n=0 then `if`(k=0, 1, 0) else
          while t<=n do r:= r+b(n-t, k-1); t, d:= t+d, d+1 od; r fi
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..75);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 75; CoefficientList[Series[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^4, {x, 0, nmax}], x] // Drop[#, 4] &

Formula

G.f.: (theta_2(sqrt(x)) / (2 * x^(1/8)) - 1)^4, where theta_2() is the Jacobi theta function.

A286180 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Product_{j>0} (1 + x^j) * (1 - x^(2*j)))^k in powers of x.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 1, 0, 1, 4, 3, 2, 0, 0, 1, 5, 6, 4, 2, 0, 0, 1, 6, 10, 8, 6, 0, 1, 0, 1, 7, 15, 15, 13, 3, 3, 0, 0, 1, 8, 21, 26, 25, 12, 6, 2, 0, 0, 1, 9, 28, 42, 45, 31, 14, 9, 0, 0, 0, 1, 10, 36, 64, 77, 66, 35, 24, 3, 2, 1, 0, 1, 11, 45
Offset: 0

Views

Author

Seiichi Manyama, May 07 2017

Keywords

Comments

A(n, k) is the number of ways of writing n as the sum of k triangular numbers.

Examples

			Square array begins:
   1, 1, 1, 1,  1,  1, ...
   0, 1, 2, 3,  4,  5, ...
   0, 0, 1, 3,  6, 10, ...
   0, 1, 2, 4,  8, 15, ...
   0, 0, 2, 6, 13, 25, ...
		

Crossrefs

Main diagonal gives A106337.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + x^i) (1 - x^(2 i)), {i, Infinity}]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten (* Michael De Vlieger, May 07 2017 *)

Formula

G.f. of column k: (Product_{j>0} (1 + x^j) * (1 - x^(2*j)))^k.

A326123 a(n) is the sum of all divisors of the first n odd numbers.

Original entry on oeis.org

1, 5, 11, 19, 32, 44, 58, 82, 100, 120, 152, 176, 207, 247, 277, 309, 357, 405, 443, 499, 541, 585, 663, 711, 768, 840, 894, 966, 1046, 1106, 1168, 1272, 1356, 1424, 1520, 1592, 1666, 1790, 1886, 1966, 2087, 2171, 2279, 2399, 2489, 2601, 2729, 2849, 2947, 3103, 3205, 3309, 3501, 3609, 3719
Offset: 1

Views

Author

Omar E. Pol, Jun 07 2019

Keywords

Comments

a(n)/A326124(n) converges to 3/5.
a(n) is also the total area of the terraces of the first n odd-indexed levels of the stepped pyramid described in A245092.

Examples

			For n = 3 the first three odd numbers are [1, 3, 5] and their divisors are [1], [1, 3], [1, 5] respectively, and the sum of these divisors is 1 + 1 + 3 + 1 + 5 = 11, so a(3) = 11.
		

Crossrefs

Partial sums of A008438.

Programs

  • Maple
    ListTools:-PartialSums(map(numtheory:-sigma, [seq(i,i=1..200,2)])); # Robert Israel, Jun 12 2019
  • Mathematica
    Accumulate@ DivisorSigma[1, Range[1, 109, 2]] (* Michael De Vlieger, Jun 09 2019 *)
  • PARI
    terms(n) = my(s=0, i=0); for(k=0, n-1, if(i>=n, break); s+=sigma(2*k+1); print1(s, ", "); i++)
    /* Print initial 50 terms as follows: */
    terms(50) \\ Felix Fröhlich, Jun 08 2019
    
  • PARI
    a(n) = sum(k=1, 2*n-1, if (k%2, sigma(k))); \\ Michel Marcus, Jun 08 2019
    
  • Python
    from math import isqrt
    def A326123(n): return (-(s:=isqrt(r:=n<<1))**2*(s+1) + sum((q:=r//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) -(t:=isqrt(m:=n>>1))**2*(t+1)+sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))+3*((u:=isqrt(n))**2*(u+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,u+1))>>1) # Chai Wah Wu, Nov 01 2023

Formula

a(n) = A024916(2n) - A326124(n).
a(n) ~ Pi^2 * n^2 / 8. - Vaclav Kotesovec, Aug 18 2021

A239052 Sum of divisors of 4*n-2.

Original entry on oeis.org

3, 12, 18, 24, 39, 36, 42, 72, 54, 60, 96, 72, 93, 120, 90, 96, 144, 144, 114, 168, 126, 132, 234, 144, 171, 216, 162, 216, 240, 180, 186, 312, 252, 204, 288, 216, 222, 372, 288, 240, 363, 252, 324, 360, 270, 336, 384, 360, 294, 468, 306, 312, 576
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2014

Keywords

Comments

Bisection of A062731 (odd part).
a(n) is also the total number of cells in the n-th branch of the second quadrant of the spiral formed by the parts of the symmetric representation of sigma(4n-2). For the quadrants 1, 3, 4 see A112610, A239053, A193553. The spiral has been obtained according to the following way: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A237270, see example.
We can find the spiral on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016

Examples

			Illustration of initial terms:
------------------------------------------------------
.        Branches of the spiral
.        in the second quadrant             n    a(n)
------------------------------------------------------
.
.                  _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|         4     24
.                 | |
.             12 _| |
.               |_ _|  _ _ _ _ _ _
.         12 _ _|     |  _ _ _ _ _|         3     18
.      _ _ _| |    9 _| |
.     |  _ _ _|  9 _|_ _|
.     | |      _ _| |      _ _ _ _
.     | |     |  _ _| 12 _|  _ _ _|         2     12
.     | |     | |      _|   |
.     | |     | |     |  _ _|
.     | |     | |     | |    3 _ _
.     | |     | |     | |     |  _|         1      3
.     |_|     |_|     |_|     |_|
.
For n = 4 the sum of divisors of 4*n-2 is 1 + 2 + 7 + 14 = A000203(14) = 24. On the other hand the parts of the symmetric representation of sigma(14) are [12, 12] and the sum of them is 12 + 12 = 24, equaling the sum of divisors of 14, so a(4) = 24.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 4*n - 2]; Array[a, 100] (* Amiram Eldar, Dec 17 2022 *)

Formula

a(n) = A000203(4n-2) = A000203(A016825(n-1)).
a(n) = 3*A008438(n-1). - Joerg Arndt, Mar 09 2014
Sum_{k=1..n} a(k) = (3*Pi^2/8) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022

A239053 Sum of divisors of 4*n-1.

Original entry on oeis.org

4, 8, 12, 24, 20, 24, 40, 32, 48, 56, 44, 48, 72, 72, 60, 104, 68, 72, 124, 80, 84, 120, 112, 120, 156, 104, 108, 152, 144, 144, 168, 128, 132, 240, 140, 168, 228, 152, 192, 216, 164, 168, 260, 248, 180, 248, 216, 192, 336, 200, 240, 312, 212, 264, 296
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2014

Keywords

Comments

Bisection of A008438.
a(n) is also the total number of cells in the n-th branch of the third quadrant of the spiral formed by the parts of the symmetric representation of sigma(4n-1), see example. For the quadrants 1, 2, 4 see A112610, A239052, A193553. The spiral has been obtained according to the following way: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A237270.
We can find the spiral (mentioned above) on the terraces of the pyramid described in A244050. - Omar E. Pol, Dec 06 2016

Examples

			Illustration of initial terms:
-----------------------------------------------------
.        Branches of the spiral
.        in the third quadrant             n    a(n)
-----------------------------------------------------
.     _       _       _       _
.    | |     | |     | |     | |
.    | |     | |     | |     |_|_ _
.    | |     | |     | |    2  |_ _|       1      4
.    | |     | |     |_|_     2
.    | |     | |    4    |_
.    | |     |_|_ _        |_ _ _ _
.    | |    6      |_      |_ _ _ _|       2      8
.    |_|_ _ _        |_   4
.   8      | |_ _      |
.          |_    |     |_ _ _ _ _ _
.            |_  |_    |_ _ _ _ _ _|       3     12
.           8  |_ _|  6
.                  |
.                  |_ _ _ _ _ _ _ _
.                  |_ _ _ _ _ _ _ _|       4     24
.                 8
.
For n = 4 the sum of divisors of 4*n-1 is 1 + 3 + 5 + 15 = A000203(15) = 24. On the other hand the parts of the symmetric representation of sigma(15) are [8, 8, 8] and the sum of them is 8 + 8 + 8 = 24, equaling the sum of divisors of 15, so a(4) = 24.
		

Crossrefs

Programs

Formula

a(n) = A000203(4n-1) = A000203(A004767(n-1)).
a(n) = 4*A097723(n-1). - Joerg Arndt, Mar 09 2014
Sum_{k=1..n} a(k) = (Pi^2/4) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022

A247954 a(n) = sigma(sigma(2n-1)).

Original entry on oeis.org

1, 7, 12, 15, 14, 28, 24, 60, 39, 42, 63, 60, 32, 90, 72, 63, 124, 124, 60, 120, 96, 84, 168, 124, 80, 195, 120, 195, 186, 168, 96, 210, 224, 126, 252, 195, 114, 224, 252, 186, 133, 224, 280, 360, 234, 248, 255, 360, 171, 392, 216, 210, 508, 280, 216, 300
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2014

Keywords

Comments

See A247821 - numbers k such that sigma(sigma(2k-1)) is a prime p.

Examples

			For n=2; a(2) = sigma(sigma(2*2-1)) = sigma(sigma(3)) = sigma(4) = 7.
		

Crossrefs

Programs

  • Magma
    [SumOfDivisors(SumOfDivisors(2*n-1)): n in [1..1000]];
    
  • Maple
    with(numtheory): A247954:=n->sigma(sigma(2*n-1)): seq(A247954(n), n=1..50); # Wesley Ivan Hurt, Oct 01 2014
  • Mathematica
    Table[DivisorSigma[1, DivisorSigma[1, 2 n - 1]], {n, 50}] (* Wesley Ivan Hurt, Oct 01 2014 *)
  • PARI
    vector(100,n,sigma(sigma(2*n-1))) \\ Derek Orr, Sep 29 2014

Formula

a(n) = A000203(A000203(2n-1)) = A000203(A008438(n-1)) = A051027(2n-1).
Previous Showing 21-30 of 76 results. Next