A006260
Second-order Eulerian numbers <>.
Original entry on oeis.org
0, 24, 444, 4400, 32120, 195800, 1062500, 5326160, 25243904, 114876376, 507259276, 2189829808, 9292526920, 38917528600, 161343812980, 663661077072, 2713224461136, 11039636532120, 44751359547420, 180880752056880
Offset: 3
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd edition. Addison-Wesley, Reading, MA, 1994, p. 270.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
G:=x^4*(24-36*x-280*x^2+652*x^3-168*x^4-288*x^5)/((1-x)^4*(1-2*x)^3*(1-3*x)^2*(1-4*x)): Gser:=series(G,x=0,27): seq(coeff(Gser,x^n),n=3..25);
A112500
Triangle of column sequences with a certain o.g.f. pattern.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 11, 10, 1, 1, 26, 60, 20, 1, 1, 57, 282, 225, 35, 1, 1, 120, 1149, 1882, 665, 56, 1, 1, 247, 4272, 13070, 9107, 1666, 84, 1, 1, 502, 14932, 79872, 100751, 35028, 3696, 120, 1, 1, 1013, 49996, 444902, 957197, 584325, 113428, 7470, 165, 1, 1
Offset: 0
Rows: [1]; [1,1]; [1,4,1]; [1,11,10,1]; [1,26,60,20,1]; [1,57,282,225,35,1]; ...
a(4,3)= 60 = 6 + 12 + 9 + 12 + 9 + 12 from the binomial(4,2)=6 terms of the sum corresponding to (n_1,n_2,n_3) = (2,0,0), (0,2,0), (0,0,2), (1,1,0), (1,0,1) and (0,1,1).
A112494
Sixth diagonal of the Stirling2 triangle A048993 and sixth column of triangle A008278.
Original entry on oeis.org
1, 63, 966, 7770, 42525, 179487, 627396, 1899612, 5135130, 12662650, 28936908, 62022324, 125854638, 243577530, 452329200, 809944464, 1404142047, 2364885369, 3880739170, 6220194750, 9759104355, 15015551265, 22693687380, 33738295500, 49402080000, 71327958156
Offset: 6
- T. D. Noe, Table of n, a(n) for n = 6..1000
- Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4, page 5.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 29.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Cf.
A001298 (fifth diagonal, resp. column).
-
Table[StirlingS2[n, n-5], {n, 6, 100}] (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
-
for(n=6,50, print1(stirling(n,n-5,2), ", ")) \\ G. C. Greubel, Oct 22 2017
-
Vec(x^6*(1 + 52*x + 328*x^2 + 444*x^3 + 120*x^4) / (1 - x)^11 + O(x^40)) \\ Colin Barker, Nov 04 2017
-
[stirling_number2(n,n-5) for n in range(6, 30)] # Zerinvary Lajos, May 16 2009
A157011
Triangle T(n,k) read by rows: T(n,k) = (k-1)*T(n-1,k) + (n-k+2)*T(n-1, k-1), with T(n,1)=1, for 1 <= k <= n, n >= 1.
Original entry on oeis.org
1, 1, 2, 1, 5, 4, 1, 9, 23, 8, 1, 14, 82, 93, 16, 1, 20, 234, 607, 343, 32, 1, 27, 588, 2991, 3800, 1189, 64, 1, 35, 1365, 12501, 30155, 21145, 3951, 128, 1, 44, 3010, 47058, 195626, 256500, 108286, 12749, 256, 1, 54, 6416, 165254, 1111910, 2456256, 1932216, 522387, 40295, 512
Offset: 1
The triangle starts in row n=1 as:
1;
1, 2;
1, 5, 4;
1, 9, 23, 8;
1, 14, 82, 93, 16;
1, 20, 234, 607, 343, 32;
1, 27, 588, 2991, 3800, 1189, 64;
1, 35, 1365, 12501, 30155, 21145, 3951, 128;
1, 44, 3010, 47058, 195626, 256500, 108286, 12749, 256;
1, 54, 6416, 165254, 1111910, 2456256, 1932216, 522387, 40295, 512;
-
A157011 := proc(n,k) if k <0 or k >= n then 0; elif k =0 then 1; else k*procname(n-1,k)+(n-k+1)*procname(n-1,k-1) ; end if; end proc: # R. J. Mathar, Jun 18 2011
-
e[n_, 0, m_]:= 1;
e[n_, k_, m_]:= 0 /; k >= n;
e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m];
Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
T[n_, 1]:= 1; T[n_, n_]:= 2^(n-1); T[n_, k_]:= T[n, k] = (k-1)*T[n-1, k] + (n-k+2)*T[n-1, k-1]; Table[T[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* G. C. Greubel, Feb 22 2019 *)
-
{T(n, k) = if(k==1, 1, if(k==n, 2^(n-1), (k-1)*T(n-1, k) + (n-k+2)* T(n-1, k-1)))};
for(n=1, 10, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 22 2019
-
def T(n, k):
if (k==1):
return 1
elif (k==n):
return 2^(n-1)
else: return (k-1)*T(n-1, k) + (n-k+2)* T(n-1, k-1)
[[T(n, k) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Feb 22 2019
A112002
Seventh diagonal of triangle A008275 (Stirling1) and seventh column of |A008276|.
Original entry on oeis.org
720, 13068, 118124, 723680, 3416930, 13339535, 44990231, 135036473, 368411615, 928095740, 2185031420, 4853222764, 10246937272, 20692933630, 40171771630, 75289668850, 136717357942, 241276443496, 414908513800, 696829576300
Offset: 1
-
[StirlingFirst(n+6, n): n in [1..20]]; // Vincenzo Librandi, Aug 09 2015
-
A112002 := proc(n) combinat[stirling1](n+6,n) ; end proc: # R. J. Mathar, Jun 08 2011
-
Table[StirlingS1[n+6, n], {n, 1, 20}] (* Jean-François Alcover, Mar 05 2014 *)
-
[stirling_number1(n,n-6) for n in range(7, 27)] # Zerinvary Lajos, May 16 2009
A144969
Stirling numbers of second kind S(n,n-6).
Original entry on oeis.org
0, 1, 127, 3025, 34105, 246730, 1323652, 5715424, 20912320, 67128490, 193754990, 512060978, 1256328866, 2892439160, 6302524580, 13087462580, 26046574004, 49916988803, 92484925445, 166218969675, 290622864675, 495564056130, 825906183960, 1347860993700
Offset: 6
- T. D. Noe, Table of n, a(n) for n = 6..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 29.
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
Table[StirlingS2[n,n-6], {n,6,30}] (* Harvey P. Dale, Sep 21 2011 *)
-
concat(0, Vec(x^7*(720*x^5 +3708*x^4 +4400*x^3 +1452*x^2 +114*x +1 )/(1-x)^13 + O(x^100))) \\ Colin Barker, Oct 28 2014
-
for(n=6,50, print1(stirling(n,n-6,2), ", ")) \\ G. C. Greubel, Oct 23 2017
-
[stirling_number2(n,n-6) for n in range(6, 28)] # Zerinvary Lajos, May 16 2009
A157012
Riordan's general Eulerian recursion: T(n,k) = (k+2)*T(n-1, k) + (n-k) * T(n-1, k-1), with T(n,0) = 1, T(n,n) = 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 18, 14, 1, 0, 1, 58, 110, 33, 1, 0, 1, 179, 672, 495, 72, 1, 0, 1, 543, 3583, 5163, 1917, 151, 1, 0, 1, 1636, 17590, 43730, 32154, 6808, 310, 1, 0, 1, 4916, 81812, 324190, 411574, 176272, 22904, 629, 1, 0
Offset: 0
Triangle begins with:
1.
1, 0.
1, 1, 0.
1, 5, 1, 0.
1, 18, 14, 1, 0.
1, 58, 110, 33, 1, 0.
1, 179, 672, 495, 72, 1, 0.
1, 543, 3583, 5163, 1917, 151, 1, 0.
1, 1636, 17590, 43730, 32154, 6808, 310, 1, 0.
1, 4916, 81812, 324190, 411574, 176272, 22904, 629, 1, 0.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215
-
e[n_, 0, m_]:= 1;
e[n_, k_, m_]:= 0 /; k >= n;
e[n_, k_, m_]:= (k+m)*e[n-1, k, m] +(n-k+1-m)*e[n-1, k-1, m];
Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
T[n_, 0]:= 1; T[n_, n_]:= 0; T[n_, k_]:= T[n, k] = (k+2)*T[n-1, k] +(n-k) *T[n-1, k-1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 22 2019 *)
-
{T(n, k) = if(k==0, 1, if(k==n, 0, (k+2)*T(n-1, k) + (n-k)* T(n-1, k-1)))};
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 22 2019
-
def T(n, k):
if (k==0): return 1
elif (k==n): return 0
else: return (k+2)*T(n-1, k) + (n-k)* T(n-1, k-1)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 22 2019
A157013
Riordan's general Eulerian recursion: T(n, k) = (k+2)*T(n-1, k) + (n-k-1) * T(n-1, k-1) with T(n,1) = 1, T(n,n) = (-1)^(n-1).
Original entry on oeis.org
1, 1, -1, 1, -4, 1, 1, -15, 5, -1, 1, -58, 10, -6, 1, 1, -229, -66, -26, 7, -1, 1, -912, -1017, -288, 23, -8, 1, 1, -3643, -8733, -4779, -415, -41, 9, -1, 1, -14566, -61880, -63606, -17242, -1158, 40, -10, 1, 1, -58257, -396796, -691036, -375118, -60990, -1956, -60, 11, -1
Offset: 1
Triangle begins with:
1.
1, -1.
1, -4, 1.
1, -15, 5, -1.
1, -58, 10, -6, 1.
1, -229, -66, -26, 7, -1.
1, -912, -1017, -288, 23, -8, 1.
1, -3643, -8733, -4779, -415, -41, 9, -1.
1, -14566, -61880, -63606, -17242, -1158, 40, -10, 1.
1, -58257, -396796, -691036, -375118, -60990, -1956, -60, 11, -1.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 214-215
-
e[n_, 0, m_]:= 1;
e[n_, k_, m_]:= 0 /; k >= n;
e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m];
Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
T[n_,1]:=1; T[n_,n_]:=(-1)^(n-1); T[n_,k_]:= T[n,k] = (k+2)*T[n-1,k] + (n-k-1)*T[n-1,k-1]; Table[T[n,k], {n,1,10}, {k,1,n}]//Flatten (* G. C. Greubel, Feb 22 2019 *)
-
{T(n, k) = if(k==1, 1, if(k==n, (-1)^(n-1), (k+2)*T(n-1, k) + (n-k-1)* T(n-1, k-1)))};
for(n=1, 10, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 22 2019
-
def T(n, k):
if (k==1): return 1
elif (k==n): return (-1)^(n-1)
else: return (k+2)*T(n-1, k) + (n-k-1)* T(n-1, k-1)
[[T(n, k) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Feb 22 2019
A288874
Row reversed version of triangle A201637 (second-order Eulerian triangle).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 8, 1, 0, 24, 58, 22, 1, 0, 120, 444, 328, 52, 1, 0, 720, 3708, 4400, 1452, 114, 1, 0, 5040, 33984, 58140, 32120, 5610, 240, 1, 0, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0, 362880, 3733920, 11026296, 12440064, 5765500, 1062500, 67260, 1004, 1, 0, 3628800, 44339040, 162186912, 238904904, 155357384, 44765000, 5326160, 218848, 2026, 1
Offset: 0
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 0 1
2: 0 2 1
3: 0 6 8 1
4: 0 24 58 22 1
5: 0 120 444 328 52 1
6: 0 720 3708 4400 1452 114 1
7: 0 5040 33984 58140 32120 5610 240 1
8: 0 40320 341136 785304 644020 195800 19950 494 1
9: 0 362880 3733920 11026296 12440064 5765500 1062500 67260 1004 1
...
-
T:= (n, k)-> combinat[eulerian2](n, n-k):
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jul 26 2017
# Using the e.g.f:
alias(W = LambertW): len := 10:
egf := (t - 1)*(1/(W(-exp(((t - 1)^2*x - 1)/t)/t) + 1) - 1):
ser := simplify(subs(W(-exp(-1/t)/t) = (-1/t), series(egf, x, len+1))):
seq(seq(n!*coeff(coeff(ser, x, n), t, k), k = 0..n), n = 0..len); # Peter Luschny, Mar 13 2025
-
Table[Boole[n == 0] + Sum[(-1)^(n + k) * Binomial[2 n + 1, k] StirlingS1[2 n - m - k, n - m - k], {k, 0, n - m - 1}], {n, 0, 10}, {m, n, 0, -1}] // Flatten (* Michael De Vlieger, Jul 21 2017, after Jean-François Alcover at A201637 *)
A290306
Number of permutations of the multiset {1,1,2,2,...,2n,2n} having exactly n ascents and no number smaller than k between the two occurrences of any number k.
Original entry on oeis.org
1, 2, 58, 4400, 644020, 155357384, 56041398784, 28299910066112, 19076135772884080, 16558710676700081120, 17997592513561138205728, 23948993629880321407298816, 38303802347672648465676584704, 72510806370598644118983905976320, 160368191672482402606757066578885120
Offset: 0
a(1) = 2: 1122, 1221.
a(2) = 58: 11224433, 11244332, 11332244, 11332442, 11334422, 11344322, ..., 44112233, 44112332, 44122133, 44122331, 44123321, 44133122.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.
-
a:= n-> combinat[eulerian2](2*n, n):
seq(a(n), n=0..20);
# second Maple program:
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, (2*n-k-1)*b(n-1, k-1)+(k+1)*b(n-1, k)))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..20);
-
b[n_, k_]:=b[n, k]=If[k<0 || k>n, 0, If[n==0, 1, (2*n - k - 1)*b[n - 1, k - 1] + (k + 1)*b[n - 1, k]]]; Table[b[2n, n], {n, 0, 20}] (* Indranil Ghosh, Jul 27 2017, after second Maple program *)
Flatten[{1, Table[Sum[(-1)^(n-k) * Binomial[4*n + 1, n - k] * StirlingS1[2*n + k, k], {k, 1, n}], {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 11 2018 *)
Previous
Showing 41-50 of 62 results.
Next
Comments