A347019
E.g.f.: 1 / (1 + 6 * log(1 - x))^(1/6).
Original entry on oeis.org
1, 1, 8, 114, 2358, 64074, 2157828, 86714592, 4049302404, 215458069428, 12867377875632, 852254389954296, 61998666080311800, 4914000741835488744, 421488717980664846960, 38897664480760253351904, 3843081247426270376211216, 404727487161912602921083536
Offset: 0
-
nmax = 17; CoefficientList[Series[1/(1 + 6 Log[1 - x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 17}]
A347023
E.g.f.: 1 / (1 - 6 * log(1 + x))^(1/6).
Original entry on oeis.org
1, 1, 6, 72, 1254, 28794, 819888, 27869316, 1101032100, 49570797780, 2505156062472, 140417898936336, 8644973807845368, 579908437058338920, 42098286646367326368, 3288252917244250703664, 274974019392668843164176, 24510436934573885695407504, 2319947117871178825560902112
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - 6 Log[1 + x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}]
A153274
Triangle, read by rows, T(n,k) = k^(n+1) * Pochhammer(1/k, n+1).
Original entry on oeis.org
2, 6, 15, 24, 105, 280, 120, 945, 3640, 9945, 720, 10395, 58240, 208845, 576576, 5040, 135135, 1106560, 5221125, 17873856, 49579075, 40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000, 362880, 34459425, 608608000, 4996616625, 26381811456, 104463111025, 337767408000, 939536222625
Offset: 1
Triangle begins as:
2;
6, 15;
24, 105, 280;
120, 945, 3640, 9945;
720, 10395, 58240, 208845, 576576;
5040, 135135, 1106560, 5221125, 17873856, 49579075;
40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000;
-
Flat(List([1..12], n-> List([1..n], k-> Product([0..n], j-> j*k+1 )))); # G. C. Greubel, Mar 05 2020
-
[(&*[j*k+1: j in [0..n]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 05 2020
-
seq(seq( k^(n+1)*pochhammer(1/k, n+1), k=1..n), n=1..12); # G. C. Greubel, Mar 05 2020
-
Table[Apply[Plus, CoefficientList[j*k^n*Pochhammer[(j+k)/k, n], j]], {n, 12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 05 2020 *)
Table[k^(n+1)*Pochhammer[1/k, n+1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 05 2020 *)
-
T(n, k) = prod(j=0, n, j*k+1);
for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Mar 05 2020
-
[[k^(n+1)*rising_factorial(1/k,n+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 05 2020
A375699
Expansion of e.g.f. 1 / (1 + x^3 * log(1 - x))^(1/6).
Original entry on oeis.org
1, 0, 0, 0, 4, 10, 40, 210, 5264, 45360, 409800, 4065600, 77948640, 1183422240, 17527233360, 267109642800, 5422495921920, 110998923235200, 2270809072896000, 47142009514454400, 1116394268619772800, 27963045712157472000, 718066383283082803200
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^3*log(1-x))^(1/6)))
-
a(n) = n!*sum(k=0, n\4, prod(j=0, k-1, 6*j+1)*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));
A020036
Nearest integer to Gamma(n + 1/6)/Gamma(1/6).
Original entry on oeis.org
1, 0, 0, 0, 1, 6, 29, 177, 1269, 10366, 95020, 966032, 10787363, 131246245, 1728075563, 24481070470, 371296235455, 6002622473192, 103045019123133, 1871984514070245, 35879703186346359, 723574014257984910
Offset: 0
-
Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
-
With[{c=Gamma[1/6]},Table[Round[Gamma[n+1/6]/c],{n,0,30}]] (* Harvey P. Dale, Jan 08 2022 *)
-
a(n) = round(gamma(n+1/6)/gamma(1/6)); \\ Michel Marcus, Jun 14 2018
A091546
First column of the array A092077 ((8,2)-Stirling2).
Original entry on oeis.org
1, 56, 10192, 3872960, 2517424000, 2497284608000, 3511182158848000, 6643156644540416000, 16275733779124019200000, 50129260039701979136000000, 189588861470152885092352000000, 863766852858016544480755712000000, 4666068539139005373285042356224000000, 29489553167358513959161467691335680000000
Offset: 1
-
a[n_] := 6^(2*n) * Pochhammer[1/6, n] * Pochhammer[1/3, n] / 2; Array[a, 20] (* Amiram Eldar, Aug 30 2025 *)
A113147
Row 6 of table A113143; equal to INVERT of 6-fold factorials shifted one place right.
Original entry on oeis.org
1, 1, 2, 10, 110, 1954, 47270, 1437562, 52531310, 2239259266, 109021857446, 5966767051354, 362558298692270, 24214789406313442, 1763062297639690790, 138975554045857840570, 11790733617760291994990, 1071215297856049456744642
Offset: 0
A(x) = 1 + x + 2*x^2 + 10*x^3 + 110*x^4 + 1954*x^5 +...
= 1/(1 - x - x^2 - 7*x^3 - 91*x^4 -...- A008542(n)*x^(n+1)
-...).
-
{a(n)=local(x=X+X*O(X^n)); A=1/(1-x-x^2*sum(j=0,n,x^j*prod(i=0,j,6*i+1)));return(polcoeff(A,n,X))}
A153189
Triangle T(n,k) = Product_{j=0..k} n*j+1.
Original entry on oeis.org
1, 1, 2, 1, 3, 15, 1, 4, 28, 280, 1, 5, 45, 585, 9945, 1, 6, 66, 1056, 22176, 576576, 1, 7, 91, 1729, 43225, 1339975, 49579075, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625
Offset: 0
Triangle begins as:
1;
1, 2;
1, 3, 15;
1, 4, 28, 280;
1, 5, 45, 585, 9945;
1, 6, 66, 1056, 22176, 576576;
1, 7, 91, 1729, 43225, 1339975, 49579075;
1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000;
1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625;
Cf.
A000142 (row 2),
A001147 (3),
A007559 (4),
A007696 (5),
A008548 (6),
A008542 (7),
A045754 (8),
A045755 (9),
A045756 (10),
A144773 (11),
A256268 (combined table).
-
[(&*[n*j+1: j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 15 2020
-
seq(seq(mul(n*j+1, j=0..k), k=0..n), n=0..10); # G. C. Greubel, Feb 15 2020
-
T[n_, k_]= If[n==0 && k==0, 1, Product[n*j+1, {j,0,k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 15 2020 *)
T[n_, k_]:= T[n, k]= If[k<2, 1+k*n, ((1+n*k)*T[n, k-1] + (1+n*k)*(1+n*(k-1))* T[n, k-2])/2]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Georg Fischer, Feb 17 2020 *)
-
T(n,k)=prod(j=0,k,n*j+1) \\ M. F. Hasler, Oct 28 2014
-
[[ product(n*j+1 for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 15 2020
A131940
Least common multiple of {1, 7, 13, 19, 25, ..., (6n+1)} (A016921).
Original entry on oeis.org
1, 7, 91, 1729, 43225, 1339975, 49579075, 2131900225, 14923301575, 164156317325, 10013535356825, 670906868907275, 48976201430231075, 3869119912988254925, 65775038520800333725, 65775038520800333725, 6380178736517632371325
Offset: 0
-
a = {1}; Do[l = 1; For[j = 1, j < n, j++, l = LCM[l, 6*j + 1]]; AppendTo[a, l], {n, 2, 20}]; a (* Stefan Steinerberger, Oct 07 2007 *)
Join[{1},Table[LCM@@(6*Range[0,n]+1),{n,20}]] (* Harvey P. Dale, Apr 30 2019 *)
A368119
Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} (n*j + 1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 15, 24, 1, 1, 1, 5, 28, 105, 120, 1, 1, 1, 6, 45, 280, 945, 720, 1, 1, 1, 7, 66, 585, 3640, 10395, 5040, 1, 1, 1, 8, 91, 1056, 9945, 58240, 135135, 40320, 1, 1, 1, 9, 120, 1729, 22176, 208845, 1106560, 2027025, 362880, 1
Offset: 0
Array A(n, k) starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 1, 2, 6, 24, 120, 720, 5040, ... A000142
[2] 1, 1, 3, 15, 105, 945, 10395, 135135, ... A001147
[3] 1, 1, 4, 28, 280, 3640, 58240, 1106560, ... A007559
[4] 1, 1, 5, 45, 585, 9945, 208845, 5221125, ... A007696
[5] 1, 1, 6, 66, 1056, 22176, 576576, 17873856, ... A008548
[6] 1, 1, 7, 91, 1729, 43225, 1339975, 49579075, ... A008542
[7] 1, 1, 8, 120, 2640, 76560, 2756160, 118514880, ... A045754
[8] 1, 1, 9, 153, 3825, 126225, 5175225, 253586025, ... A045755
-
def A(n, k): return n**k * rising_factorial(1/n, k) if n > 0 else 1
for n in range(9): print([A(n, k) for k in range(8)])
Comments