A049382
Expansion of (1-25*x)^(-4/5).
Original entry on oeis.org
1, 20, 450, 10500, 249375, 5985000, 144637500, 3512625000, 85620234375, 2092939062500, 51277007031250, 1258617445312500, 30941012197265625, 761624915625000000, 18768613992187500000, 462959145140625000000
Offset: 0
Joe Keane (jgk(AT)jgk.org)
(1-x)^(-4/5) = 1 + 4/5*x + 18/25*x^2 + 84/125*x^3 + ...
-
A049382 := n -> (-25)^n*binomial(-4/5, n):
seq(A049382(n), n=0..16); # Peter Luschny, Oct 23 2018
-
CoefficientList[Series[(1-25x)^(-4/5),{x,0,20}],x] (* Harvey P. Dale, Oct 24 2021 *)
-
a(n) = prod(k=1, n, 25 - 5/k); \\ Michel Marcus, Jun 13 2018
A144828
Partial products of successive terms of A017113; a(0)=1.
Original entry on oeis.org
1, 4, 48, 960, 26880, 967680, 42577920, 2214051840, 132843110400, 9033331507200, 686533194547200, 57668788341964800, 5305528527460761600, 530552852746076160000, 57299708096576225280000, 6646766139202842132480000, 824199001261152424427520000, 108794268166472120024432640000
Offset: 0
a(0)=1, a(1)=4, a(2)=4*12=48, a(3)=4*12*20=960, a(4)=4*12*20*28=26880, ...
Since a(1) = 4, there are 4 signed permutations of 4 that are equal to their reverse-inverses. These are: (+2,+4,+1,+3), (+3,+1,+4,+2), (-2,-4,-1,-3), (-3,-1,-4,-2). - _Justin M. Troyka_, Aug 11 2011
G.f. = 1 + 4*x + 48*x^2 + 960*x^3 + 26880*x^4 + 967680*x^5 + 42577920*x^6 + ...
-
[2^k *Factorial(2*k) / Factorial(k): k in [0..20]]; // Vincenzo Librandi, Aug 11 2011
-
A144828:= n-> 2^n*n!*binomial(2*n,n); seq(A144828(n), n=0..30); # G. C. Greubel, Apr 02 2021
-
Table[4^n (2 n - 1)!!, {n, 0, 15}] (* Vincenzo Librandi, May 14 2015 *)
Join[{1},FoldList[Times,(8*Range[0,20]+4)]] (* Harvey P. Dale, Dec 01 2015 *)
-
a(n)=binomial(2*n,n)*n!<Charles R Greathouse IV, Jan 17 2012
-
{a(n) = if( n<0, (-1)^n / a(-n), 2^n *(2*n)! / n!)}; /* Michael Somos, Jan 06 2017 */
-
[2^n*factorial(n+1)*catalan_number(n) for n in (0..30)] # G. C. Greubel, Apr 02 2021
A011801
Triangle read by rows, the inverse Bell transform of n!*binomial(4,n) (without column 0).
Original entry on oeis.org
1, 4, 1, 36, 12, 1, 504, 192, 24, 1, 9576, 3960, 600, 40, 1, 229824, 100656, 17160, 1440, 60, 1, 6664896, 3048192, 563976, 54600, 2940, 84, 1, 226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1, 8837652096, 4302305280, 887785920, 102332160, 7254576, 325584, 9072, 144, 1
Offset: 1
Triangle starts:
1;
4, 1;
36, 12, 1;
504, 192, 24, 1;
9576, 3960, 600, 40, 1;
229824, 100656, 17160, 1440, 60, 1;
6664896, 3048192, 563976, 54600, 2940, 84, 1;
226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1;
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
- Index entries for sequences related to Bessel functions or polynomials
-
function T(n,k) // T = A011801
if k eq 0 then return 0;
elif k eq n then return 1;
else return (5*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
end if;
end function;
[T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
(* First program *)
T[n_, m_] /; n>=m>=1:= T[n, m]= (5*(n-1)-m)*T[n-1, m] + T[n-1, m-1]; T[n_, m_] /; nJean-François Alcover, Jun 20 2018 *)
(* Second program *)
rows = 10;
b[n_, m_]:= BellY[n, m, Table[k! Binomial[4, k], {k, 0, rows}]];
T= Table[b[n, m], {n,rows}, {m,rows}]//Inverse//Abs;
A011801= Table[T[[n, m]], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
# uses[inverse_bell_matrix from A264428]
# Adds 1,0,0,0, ... as column 0 at the left side of the triangle.
inverse_bell_matrix(lambda n: factorial(n)*binomial(4, n), 8) # Peter Luschny, Jan 16 2016
A049210
a(n) = -Product_{k=0..n} (8*k-1); octo-factorial numbers.
Original entry on oeis.org
1, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, 475493443425, 33760034483175, 2667042724170825, 232032717002861775, 22043108115271868625, 2270440135873002468375, 252018855081903273989625, 29990243754746489604765375, 3808760956852804179805202625
Offset: 0
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6),
A049209 (m=7), this sequence (m=8),
A049211 (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
m:=8; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..30]]; // G. C. Greubel, Feb 16 2022
-
FoldList[Times,1,8*Range[20]-1] (* Harvey P. Dale, Aug 03 2014 *)
CoefficientList[Series[(1-8*x)^(-7/8),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
a(n) = -prod(k=0, n, 8*k-1); \\ Michel Marcus, Jan 08 2015
-
m=8; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022
A144827
Partial products of successive terms of A017029; a(0)=1.
Original entry on oeis.org
1, 4, 44, 792, 19800, 633600, 24710400, 1136678400, 60243955200, 3614637312000, 242180699904000, 17921371792896000, 1451631115224576000, 127743538139762688000, 12135636123277455360000, 1237834884574300446720000, 134924002418598748692480000, 15651184280557454848327680000
Offset: 0
a(0)=1, a(1)=4, a(2)=4*11=44, a(3)=4*11*18=792, a(4)=4*11*18*25=19800, ...
-
[ 1 ] cat [ &*[ (7*k+4): k in [0..n] ]: n in [0..14] ]; // Klaus Brockhaus, Nov 10 2008
-
FoldList[Times,1,Range[4,150,7]] (* Harvey P. Dale, Apr 25 2014 *)
-
[1]+[4*7^(n-1)*rising_factorial(11/7, n-1) for n in (1..30)] # G. C. Greubel, Feb 22 2022
A157404
A partition product of Stirling_2 type [parameter k = 4] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 4, 1, 12, 36, 1, 72, 144, 504, 1, 280, 1800, 2520, 9576, 1, 1740, 22320, 37800, 57456, 229824, 1, 8484, 182700, 864360, 1005480, 1608768, 6664896, 1, 57232, 2380896, 16546320, 26276544, 32175360, 53319168, 226606464
Offset: 1
A257614
Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 5*n + 2.
Original entry on oeis.org
1, 2, 2, 4, 28, 4, 8, 244, 244, 8, 16, 1844, 5856, 1844, 16, 32, 13260, 101620, 101620, 13260, 32, 64, 93684, 1511160, 3455080, 1511160, 93684, 64, 128, 657836, 20663388, 91981880, 91981880, 20663388, 657836, 128, 256, 4609588, 269011408, 2121603436, 4047202720, 2121603436, 269011408, 4609588, 256
Offset: 0
Array t(n,k) begins as:
1, 2, 4, 8, 16, ... A000079;
2, 28, 244, 1844, 13260, ...;
4, 244, 5856, 101620, 1511160, ...;
8, 1844, 101620, 3455080, 91981880, ...;
16, 13260, 1511160, 91981880, 4047202720, ...;
32, 93684, 20663388, 2121603436, 146321752612, ...;
64, 657836, 269011408, 44675623468, 4648698508440, ...;
Triangle T(n,k) begins as:
1;
2, 2;
4, 28, 4;
8, 244, 244, 8;
16, 1844, 5856, 1844, 16;
32, 13260, 101620, 101620, 13260, 32;
64, 93684, 1511160, 3455080, 1511160, 93684, 64;
128, 657836, 20663388, 91981880, 91981880, 20663388, 657836, 128;
Similar sequences listed in
A256890.
-
t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
T[n_, k_, p_, q_]= t[n-k, k, p, q];
Table[T[n,k,5,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 01 2022 *)
-
@CachedFunction
def t(n,k,p,q):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
def A257614(n,k): return t(n-k,k,5,2)
flatten([[A257614(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2022
A051150
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -5, 1, 50, -15, 1, -750, 275, -30, 1, 15000, -6250, 875, -50, 1, -375000, 171250, -28125, 2125, -75, 1, 11250000, -5512500, 1015000, -91875, 4375, -105, 1, -393750000, 204187500, -41037500, 4230625
Offset: 1
Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-5, 1;
50, -15, 1;
-750, 275, -30, 1;
15000, -6250, 875, -50, 1;
-375000, 171250, -28125, 2125, -75, 1;
...
3rd row o.g.f.: E(3,x) = 50*x - 15*x^2 + x^3.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are first introduced.]
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77. [Special cases of the numbers R_n^m(a,b) are tabulated.]
First (m=1) column sequence:
A052562(n-1).
Row sums (signed triangle):
A008546(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A008548(n).
A254322
Expansion of e.g.f.: (1-11*x)^(-10/11).
Original entry on oeis.org
1, 10, 210, 6720, 288960, 15603840, 1014249600, 77082969600, 6706218355200, 657209398809600, 71635824470246400, 8596298936429568000, 1126115160672273408000, 159908352815462823936000, 24465977980765812062208000, 4012420388845593178202112000
Offset: 0
Sequences of the form k^n*Pochhammer((k-1)/k, n):
A000007 (k=1),
A001147 (k=2),
A008544 (k=3),
A008545 (k=4),
A008546 (k=5),
A008543 (k=6),
A049209 (k=7),
A049210 (k=8),
A049211 (k=9),
A049212 (k=10), this sequence (k=11),
A346896 (k=12).
-
m=11; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 08 2022
-
CoefficientList[Series[(1-11*x)^(-10/11), {x, 0, 20}], x] * Range[0, 20]!
FullSimplify[Table[11^n * Gamma[n+10/11] / Gamma[10/11], {n, 0, 18}]]
-
m=11; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 08 2022
A144285
Lower triangular array called S2hat(-4) related to partition number array A144284.
Original entry on oeis.org
1, 4, 1, 36, 4, 1, 504, 52, 4, 1, 9576, 648, 52, 4, 1, 229824, 12888, 712, 52, 4, 1, 6664896, 286272, 13464, 712, 52, 4, 1, 226606464, 8182944, 299520, 13720, 712, 52, 4, 1, 8837652096, 266366016, 8455392, 301824, 13720, 712, 52, 4, 1, 388856692224, 10191545280, 273091392
Offset: 1
[1];[4,1];[36,4,1];[504,52,4,1];[9576,648,52,4,1];...
Comments