cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 124 results. Next

A257088 a(2*n) = 4*n if n>0, a(2*n + 1) = 2*n + 1, a(0) = 1.

Original entry on oeis.org

1, 1, 4, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, 17, 36, 19, 40, 21, 44, 23, 48, 25, 52, 27, 56, 29, 60, 31, 64, 33, 68, 35, 72, 37, 76, 39, 80, 41, 84, 43, 88, 45, 92, 47, 96, 49, 100, 51, 104, 53, 108, 55, 112, 57, 116, 59, 120, 61, 124, 63, 128
Offset: 0

Views

Author

Michael Somos, Apr 16 2015

Keywords

Examples

			G.f. = 1 + x + 4*x^2 + 3*x^3 + 8*x^4 + 5*x^5 + 12*x^6 + 7*x^7 + 16*x^8 + ...
		

Crossrefs

CF. A257083 (partial sums), A246695.

Programs

  • Haskell
    import Data.List (transpose)
    a257088 n = a257088_list !! n
    a257088_list = concat $ transpose [a008574_list, a005408_list]
    -- Reinhard Zumkeller, Apr 17 2015
  • Mathematica
    a[ n_] := Which[ n < 1, Boole[n == 0], OddQ[n], n, True, 2 n];
    a[ n_] := SeriesCoefficient[ (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4), {x, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, n%2, n, 2*n)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4) + x * O(x^n), n))};
    

Formula

Euler transform of length 4 sequence [ 1, 3, -1, -1].
a(n) is multiplicative with a(2^e) = 2^(e+1) if e>0, otherwise a(p^e) = p^e.
G.f.: (1 + x + 2*x^2 + x^3 + x^4) / (1 - 2*x^2 + x^4).
G.f.: (1 - x^3) * (1 - x^4) / ((1 - x) * (1 - x^2)^3).
MOBIUS transform of A215947 is [1, 4, 3, 8, 5, ...].
a(n) = n * A040001(n) if n>0.
a(n) + a(n-1) = A007310(n) if n>0.
a(n) = A001082(n+1) - A001082(n) if n>0.
Binomial transform with a(0)=0 is A128543 if n>0.
a(2*n) = A008574(n). a(2*n + 1) = A005408(n).
a(n) = A022998(n) if n>0. - R. J. Mathar, Apr 19 2015
From Amiram Eldar, Jan 28 2025: (Start)
Dirichlet g.f.: (1+2^(1-s)) * zeta(s-1).
Sum_{k=1..n} a(k) ~ (3/4) * n^2. (End)
a(n) = gcd(n^n, 2*n). - Mia Boudreau, Jun 27 2025

A265045 Coordination sequence for a 6.6.6 point in the 3-transitive tiling {4.6.6, 6.6.6, 6.6.6.6} of the plane by squares and dominoes (hexagons).

Original entry on oeis.org

1, 3, 7, 11, 14, 18, 23, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232
Offset: 0

Views

Author

N. J. A. Sloane and Susanna Cuyler, Dec 27 2015

Keywords

Comments

This tiling is 3-transitive but not 3-uniform since the polygons are not regular. It is a common floor-tiling.
The coordination sequences with respect to the points of types 4.6.6 (labeled "C" in the illustration), 6.6.6 ("B"), 6.6.6.6 ("A") are A265046, A265045, and A008574, respectively. The present sequence is for a "B" point.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-1},{1,3,7,11,14,18,23,28,32},60] (* Harvey P. Dale, Sep 23 2017 *)
  • PARI
    Vec((1+x)*(1+2*x^2-2*x^3+x^4+x^6-x^7)/(1-x)^2 + O(x^100)) \\ Colin Barker, Jan 01 2016

Formula

For n >= 7 all three sequences equal 4n. (For n >= 7 the n-th shell contains n-1 points in the interior of each quadrant plus 4 points on the axes.)
From Colin Barker, Jan 01 2016: (Start)
a(n) = 2*a(n-1)-a(n-2) for n>8.
a(n) = 4*n for n>6.
G.f.: (1+x)*(1+2*x^2-2*x^3+x^4+x^6-x^7) / (1-x)^2.
(End)

A265046 Coordination sequence for a 4.6.6 point in the 3-transitive tiling {4.6.6, 6.6.6, 6.6.6.6} of the plane by squares and dominoes (hexagons).

Original entry on oeis.org

1, 3, 5, 8, 13, 18, 23, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232
Offset: 0

Views

Author

N. J. A. Sloane and Susanna Cuyler, Dec 27 2015

Keywords

Comments

This tiling is 3-transitive but not 3-uniform since the polygons are not regular. It is a common floor-tiling.
The coordination sequences with respect to the points of types 4.6.6 (labeled "C" in the illustration), 6.6.6 ("B"), 6.6.6.6 ("A") are A265046, A265045, and A008574, respectively. The present sequence is for a "C" point.

Crossrefs

Programs

  • PARI
    Vec((1+x)*(1+x^3+x^4-x^5+x^6-x^7)/(1-x)^2+ O(x^100)) \\ Colin Barker, Jan 01 2016

Formula

For n >= 7 all three sequences equal 4n. (For n >= 7 the n-th shell contains n-1 points in the interior of each quadrant plus 4 points on the axes.)
From Colin Barker, Jan 01 2016: (Start)
a(n) = 2*a(n-1)-a(n-2) for n>8.
a(n) = 4*n for n>6.
G.f.: (1+x)*(1+x^3+x^4-x^5+x^6-x^7) / (1-x)^2.
(End)

A085690 Number of intersections between a sphere inscribed in a cube and the n X n X n cubes resulting from a cubic lattice subdivision of the enclosing cube.

Original entry on oeis.org

8, 26, 56, 98, 152, 194, 272, 362, 440, 530, 656, 746, 872, 1034, 1160, 1298, 1496, 1658, 1856, 1994, 2240, 2450, 2624, 2906, 3128, 3362, 3656, 3890, 4208, 4442, 4760, 5090, 5360, 5714, 6032, 6362, 6752, 7106, 7496, 7826, 8216, 8618, 9080, 9458, 9896
Offset: 2

Views

Author

Hugo Pfoertner, Jul 17 2003

Keywords

Comments

A concise description of the problem is given by Clive Tooth in the Seaman, Tooth link. Sequence terms up to n=10 were first given by Dave Seaman. Cubes having at least one vertex on the sphere and all other vertices either all inside or all outside the sphere are counted as 1/2. a(n) is asymptotic to (3/2)*Pi*n^2. (Clive Tooth) The terms a(2),...,a(6) are identical with A005897(n-1) (points on surface of cube with square grid on its faces).

Examples

			a(2)=8 because all 8 cubes resulting from a 2*2*2 subdivision of a cube are intersected by a sphere inscribed in the large cube.
a(4)=56: 8 central cubes of 4*4*4=64 not intersected.
		

Crossrefs

Programs

  • Fortran
    ! See Links.
    (C#) // See Links.

Extensions

Corrected overflow in program and b-file by Hugo Pfoertner, Apr 09 2016

A086460 Square array read by antidiagonals: T(n,k)=nk+0^n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 4, 3, 0, 1, 4, 6, 6, 4, 0, 1, 5, 8, 9, 8, 5, 0, 1, 6, 10, 12, 12, 10, 6, 0, 1, 7, 12, 15, 16, 15, 12, 7, 0, 1, 8, 14, 18, 20, 20, 18, 14, 8, 0, 1, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, 1, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 1, 11, 20, 27, 32, 35, 36
Offset: 0

Views

Author

Paul Barry, Jul 21 2003

Keywords

Comments

Rows include A028310, A004277, A008486, A008574, A008706, A008458. Main diagonal is n^2+0^n (A000290, preceded by extra 1). Inverse binomial transform of array A049513.

Examples

			Rows begin
1 0 0 0 0 ...
1 1 2 3 4 ...
1 2 4 6 8 ...
1 3 6 9 12 ...
1 4 8 12 16 ...
		

Formula

T(n, k)=nk+0^n

A129717 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 101's (n >= 0, 0 <= k <= floor((n-1)/2)). A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 3, 4, 1, 4, 4, 4, 8, 1, 4, 12, 5, 4, 16, 13, 1, 4, 20, 25, 6, 4, 24, 41, 19, 1, 4, 28, 61, 44, 7, 4, 32, 85, 85, 26, 1, 4, 36, 113, 146, 70, 8, 4, 40, 145, 231, 155, 34, 1, 4, 44, 181, 344, 301, 104, 9, 4, 48, 221, 489, 532, 259, 43, 1, 4, 52, 265, 670, 876, 560, 147, 10, 4, 56
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

Row n has 1+floor((n-1)/2) terms for n >= 1.
Row sums are the Fibonacci numbers (A000045).
T(n,1) = A008574(n-3).
T(n,2) = A001844(n-5).
T(n,3) = A005900(n-6).
T(n,4) = A006325(n-7).
T(n,5) = A033455(n-10).
T(n,k) = A129718(n,k+1) (since in each word: 1 + the number of 101's = number of runs of 1's).
Sum_{k>=0} k*T(n,k) = A004798(n-2).

Examples

			T(6,2)=5 because we have 110101, 101101, 101010, 101011 and 010101.
Triangle starts:
  1;
  2;
  3;
  4,  1;
  4,  4;
  4,  8,  1;
  4, 12,  5;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n=0 and k=0 then 1 elif n=1 and k=0 then 2 elif n=2 and k=0 then 3 elif n=3 and k=1 then 1 elif k
    				
  • Mathematica
    MapAt[{0, 1} + # &, #, 4] /. {} -> {1} &@ Table[If[n < 3, n + 1, Binomial[n - k - 1, k] + 2 Binomial[n - k - 2, k] + Binomial[n - k - 3, k]], {n, 0, 17}, {k, 0, Floor[(n - 1)/2]}] // Flatten (* Michael De Vlieger, Nov 15 2019 *)

Formula

G.f.: G(t,z) = (1+z)*(1 + z^2 - t*z^2)/(1 - z - t*z^2).
G.f. of col 0: (1+z)(1+z^2)/(1-z), leading to the partial sums of 1,1,1,1,0,0,0,...
G.f. of col k: z^(2k+1)*(1+z)^2/(1-z)^(k+1) (k >= 1).
T(n,k) = binomial(n-k-1, k) + 2*binomial(n-k-2, k) + binomial(n-k-3, k) for n >= 4 and 0 <= k < n/2.

A130323 A007318^(-1) * A130322.

Original entry on oeis.org

1, 3, 1, 5, 2, 1, 7, 3, 1, 1, 9, 4, 2, 0, 1, 11, 5, 2, 2, -1, 1, 13, 6, 3, 0, 3, -2, 1, 15, 7, 3, 3, -3, 5, -3, 1, 17, 8, 4, 0, 6, -8, 8, -4, 1, 19, 9, 4, 4, -6, 14, -16, 12, -5, 1
Offset: 0

Views

Author

Gary W. Adamson, May 24 2007

Keywords

Comments

Row sums = A008574: (1, 4, 8, 12, 16, 20, 24, ...).

Examples

			First few rows of the triangle:
   1;
   3, 1;
   5, 2, 1;
   7, 3, 1, 1;
   9, 4, 2, 0,  1;
  11, 5, 2, 2, -1,  1;
  13, 6, 3, 0,  3, -2,   1;
  15, 7, 3, 3, -3,  5,  -3,  1;
  17, 8, 4, 0,  6, -8,   8, -4,  1;
  19, 9, 4, 4, -6, 14, -16, 12, -5, 1;
  ...
		

Crossrefs

Formula

Inverse binomial transform of triangle A130322, as infinite lower triangular matrices.

A131032 A097806 * A130296.

Original entry on oeis.org

1, 3, 1, 5, 2, 1, 7, 2, 2, 1, 9, 2, 2, 2, 1, 11, 2, 2, 2, 2, 1, 13, 2, 2, 2, 2, 2, 1, 15, 2, 2, 2, 2, 2, 2, 1, 17, 2, 2, 2, 2, 2, 2, 2, 1, 19, 2, 2, 2, 2, 2, 2, 2, 2, 1, 21, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 23, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 10 2007

Keywords

Comments

Row sums give A008574.

Examples

			First few rows of the triangle are:
1;
3, 1;
5, 2, 1;
7, 2, 2, 1;
9, 2, 2, 2, 1;
11, 2, 2, 2, 2, 1;
13, 2, 2, 2, 2, 2, 1;
...
		

Crossrefs

Formula

A097806 * A130296 as infinite lower triangular matrices. A097806 = the pairwise operator, A130296 = (1; 2,1; 3,1,1; ...).

Extensions

Definition corrected and more terms from Georg Fischer, Oct 10 2021

A202241 Array F(n,m) read by antidiagonals: F(0,m)=1, F(n,0) = A130713(n), and column m+1 is recursively defined as the partial sums of column m.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 0, 4, 4, 1, 0, 4, 8, 5, 1, 0, 4, 12, 13, 6, 1, 0, 4, 16, 25, 19, 7, 1, 0, 4, 20, 41, 44, 26, 8, 1, 0, 4, 24, 61, 85, 70, 34, 9, 1, 0, 4, 28, 85, 146, 155, 104, 43, 10, 1, 0, 4, 32, 113, 231, 301, 259, 147, 53, 11, 1, 0, 4, 36, 145, 344, 532, 560, 406, 200, 64, 12, 1
Offset: 0

Views

Author

Paul Curtz, Dec 16 2011

Keywords

Comments

The array F(n,m), beginning with row n=0, is:
1, 1, 1, 1, 1, 1, 1,
2, 3, 4, 5, 6, 7, 8,
1, 4, 8, 13, 19, 26, 34,
0, 4, 12, 25, 44, 70, 104,
0, 4, 16, 41, 85, 155, 259,
0, 4, 20, 61, 146, 301, 560,
0, 4, 24, 85, 231, 532, 1092.
Columns after A130713, A113311, A008574 have signatures (3,-3,1), (4,-6,4,-1), (5,-10,10,-5,1), (6,-15,20,-15,6,-1) (from A135278(n+3)).
Inserting columns of zeros and pushing the columns down, plus alternating sign switches defines the following triangle T(n,2m) = (-1)^(m/2)*F(n-2m,m):
1,
2 0,
1 0 -1,
0 0 -3 0,
0 0 -4 0 1,
0 0 -4 0 4 0,
0 0 -4 0 8 0 -1
The row sums in the triangle are (-1)^n*A099838(n).
The companion to A201863 is
1
1 0
1 0 0
1 0 -2 0
1 0 -4 0 1
1 0 -6 0 5 0
1 0 -8 0 13 0 -2
1 0 -10 0 25 0 -12 0
1 0 -12 0 41 0 -38 0 4
1 0 -14 0 61 0 -88 0 28 0
1 0 -16 0 85 0 -170 0 104 0 -8
5th column: A001844; 7th column: -A035597=-2*A005900(n+1); 9th column: 4*A006325(n+2); 11th column: -8*(1,8,34,104) (from columns 4,5,6,7 of F(n,m)).
As a triangular array, this is the Riordan array ((1+x)^2, x/(1-x)). - Philippe Deléham, Feb 21 2012

Examples

			Triangle T(n,k) begins:
  1
  2, 1
  1, 3,  1
  0, 4,  4,  1
  0, 4,  8,  5,   1
  0, 4, 12, 13,   6,   1
  0, 4, 16, 25,  19,   7,   1
  0, 4, 20, 41,  44,  26,   8,  1
  0, 4, 24, 61,  85,  70,  34,  9,  1
  0, 4, 28, 85, 146, 155, 104, 43, 10, 1
- _Philippe Deléham_, Feb 21 2012
		

Crossrefs

Cf. A130713 (column 0), A113311 (column 1), A008574 (column 2), A001844 (column 3), A005900 (column 4), A006325 (column 5), A033455 (column 6).
Cf. A267633.

Programs

  • GAP
    Flat(List([0..12],n->List([0..n],k->Binomial(n,n-k)+Binomial(n-1,n-k-1)-Binomial(n-2,n-k-2)-Binomial(n-3,n-k-3)))); # Muniru A Asiru, Mar 22 2018
  • Maple
    A130713 := proc(n)
        if n <= 2 and n >=0 then
            op(n+1,[1,2,1]) ;
        else
            0;
        end if;
    end proc:
    A202241 := proc(n,m)
        option remember;
        if n < 0 then
            0 ;
        elif m = 0 then
            A130713(n);
        else
            procname(n,m-1)+procname(n-1,m) ;
        end if;
    end proc:
    for d from 0 to 12 do
        for m from 0 to d do
            printf("%d,",A202241(d-m,m)) ;
        end do:
    end do: # R. J. Mathar, Dec 22 2011
    C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if end proc:
    for n from 0 to 10 do
         seq(C(n, n-k) + C(n-1, n-k-1) - C(n-2, n-k-2) - C(n-3, n-k-3), k = 0..n);
    end do; # Peter Bala, Mar 20 2018
  • Mathematica
    rows = 12;
    T[0] = PadRight[{1, 2, 1}, rows];
    T[n_ /; nJean-François Alcover, Jun 29 2019 *)
  • Sage
    def Trow(n): return [binomial(n, n-k) + binomial(n-1, n-k-1) - binomial(n-2, n-k-2) - binomial(n-3, n-k-3) for k in (0..n)]
    for n in (0..9): print(Trow(n)) # Peter Luschny, Mar 21 2018
    

Formula

F(1,m) = m+2.
F(2,m) = A034856(m+1).
F(3,m) = A000297(m-1).
Sum_{m=0..d} F(d-m,m) = A116453(d-3), d >= 3 (antidiagonal sums).
As a triangular array T(n,k), 0 <= k <= n, satisfies: T(n,k) = T(n-1,k) + T(n-1,k-1) with T(0,0) = 1, T(1,0) = 2, T(2,0) = 1, T(3,0) = 0. - Philippe Deléham, Feb 21 2012
Unsigned diagonals of A267633 (beginning with its main diagonal) appear to be the reverse rows of this entry's triangle beginning with the fourth row. - Tom Copeland, Jan 26 2016
T(n,k) = C(n, n-k) + C(n-1, n-k-1) - C(n-2, n-k-2) - C(n-3, n-k-3), where C(n, k) = n!/(k!*(n-k)!) if 0 <= k <= n, otherwise 0. - Peter Bala, Mar 20 2018

A257174 a(n) = 4*n/3 if n = 3*k and n!=0, otherwise a(n) = n except a(0) = 1.

Original entry on oeis.org

1, 1, 2, 4, 4, 5, 8, 7, 8, 12, 10, 11, 16, 13, 14, 20, 16, 17, 24, 19, 20, 28, 22, 23, 32, 25, 26, 36, 28, 29, 40, 31, 32, 44, 34, 35, 48, 37, 38, 52, 40, 41, 56, 43, 44, 60, 46, 47, 64, 49, 50, 68, 52, 53, 72, 55, 56, 76, 58, 59, 80, 61, 62, 84, 64, 65, 88
Offset: 0

Views

Author

Michael Somos, Apr 17 2015

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 4*x^3 + 4*x^4 + 5*x^5 + 8*x^6 + 7*x^7 + 8*x^8 + ...
		

References

  • This is a divisibility sequence.

Crossrefs

Programs

  • Magma
    I:=[1,1,2,4,4,5,8]; [n le 7 select I[n] else 2*Self(n-3)-Self(n-6): n in [1..80]]; // Vincenzo Librandi, Apr 28 2015
    
  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((1+x^2)*(1+x+x^2+x^3+x^4)/(1-2*x^3+x^6))); // G. C. Greubel, Aug 02 2018
  • Maple
    A257174:=n->`if`(n=0,1,(n/3)*(4+floor(n/3)-ceil(n/3))): seq(A257174(n), n=0..100); # Wesley Ivan Hurt, Apr 27 2015
  • Mathematica
    a[ n_] := If[ n==0, 1, n + If[ Mod[n, 3] == 0, n/3, 0]];
    a[ n_] := n + Which[ n==0, 1, Mod[n, 3] == 0, n/3, True, 0];
    Join[{1}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 2, 4, 4, 5, 8}, 100]] (* Vincenzo Librandi, Apr 28 2015 *)
    a[ n_] := If[ n==0, 1, Sign[n] SeriesCoefficient[ x / (1 - x)^2 + x^3 / (1 - x^3)^2, {x, 0, Abs@n}]]; (* Michael Somos, Dec 30 2016 *)
    CoefficientList[Series[(1+x^2)*(1+x+x^2+x^3+x^4)/(1-2*x^3+x^6), {x, 0, 60}], x] (* G. C. Greubel, Aug 02 2018 *)
  • PARI
    {a(n) = n + if( n==0, 1, n%3==0, n/3, 0)};
    
  • PARI
    {a(n) = if( n==0, 1, sign(n) * polcoeff( (1 - x^4) * (1 - x^5) / ((1 - x) * (1 - x^2) * (1 - x^3)^2) + x * O(x^abs(n)), abs(n)))};
    
  • PARI
    my(x='x+O('x^60)); Vec((1+x^2)*(1+x+x^2+x^3+x^4)/(1-2*x^3+x^6)) \\ G. C. Greubel, Aug 02 2018
    

Formula

Euler transform of length 5 sequence [1, 1, 2, -1, -1].
a(n) is multiplicative with a(0) = 1, a(3^e) = 4*3^(e-1) if e>0, a(p^e) = p^e otherwise.
G.f.: (1 - x^4) * (1 - x^5) / ((1 - x) * (1 - x^2) * (1 - x^3)^2).
G.f.: (1 + x^2) * (1 + x + x^2 + x^3 + x^4) / (1 - 2*x^3 + x^6).
a(3*n) = A008574(n).
a(n) = -a(-n) for all n in Z except n=0.
From Wesley Ivan Hurt, Apr 27 2015: (Start)
a(n) = 2*a(n-3)-a(n-6).
a(n) = n*(4+floor(n/3)+floor(-n/3))/3 for n>0. (End)
a(n) = (-1)^n * A280057(n). - Michael Somos, Dec 30 2016
G.f.: 1 + x / (1 - x)^2 + x^3 / (1 - x^3)^2. - Michael Somos, Dec 30 2016
0 = +22 + a(n)*(+21 + 3*a(n) + 7*a(n+1) -14*a(n+2)) + a(n+1)*(-6*a(n+1) + 7*a(n+2)) + a(n+2)*(-21 + 3*a(n+2)) if n>0. - Michael Somos, Dec 30 2016
Dirichlet g.f.: zeta(s-1)*(1+1/3^s). - Amiram Eldar, Dec 29 2022
Previous Showing 101-110 of 124 results. Next