cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 473 results. Next

A013679 Continued fraction for zeta(2) = Pi^2/6.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 4, 7, 1, 4, 2, 3, 4, 10, 1, 2, 1, 1, 1, 15, 1, 3, 6, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 3, 1, 1, 5, 1, 2, 2, 1, 1, 6, 27, 20, 3, 97, 105, 1, 1, 1, 1, 1, 45, 2, 8, 19, 1, 4, 1, 1, 3, 1, 2, 1, 1, 1, 5, 1, 1, 2, 3, 6, 1, 1, 1, 2, 1, 5, 1, 1, 2, 9, 5, 3, 2, 1, 1, 1
Offset: 0

Views

Author

Keywords

Examples

			1.644934066848226436472415166... = 1 + 1/(1 + 1/(1 + 1/(1 + 1/(4 + ...))))
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
  • David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 23.

Crossrefs

Cf. A013661 (decimal expansion).
Cf. continued fractions for zeta(3)-zeta(20): A013631, A013680-A013696.

Programs

  • Mathematica
    ContinuedFraction[ Pi^2/6, 100]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^2/6); for (n=1, 20000, write("b013679.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 29 2009

Extensions

Offset changed by Andrew Howroyd, Jul 10 2024

A077641 Number of squarefree integers in closed interval [n, 2n-1], i.e., among n consecutive numbers beginning with n.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 14, 15, 15, 16, 16, 17, 18, 19, 19, 19, 20, 21, 21, 22, 23, 23, 23, 24, 24, 25, 25, 26, 27, 28, 28, 29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 37, 38, 38, 39, 38, 39, 40, 41, 41, 41, 42, 43, 43, 44, 45, 45
Offset: 1

Views

Author

Labos Elemer, Nov 14 2002

Keywords

Examples

			For n = 10: among the numbers {10,...,19} seven are squarefree: {10,11,13,14,15,17,19}, so a(10) = 7.
		

Crossrefs

Programs

  • Mathematica
    Table[Apply[Plus, Table[Abs[MoebiusMu[w+j]], {j, 0, w-1}]], {w, 1, 128}]
    Table[Count[Range[n,2n-1],?SquareFreeQ],{n,80}] (* _Harvey P. Dale, Oct 27 2013 *)
    Module[{nn=80,sf},sf=Table[If[SquareFreeQ[n],1,0],{n,2nn}];Table[Total[ Take[ sf,{i,2i-1}]],{i,nn}]] (* Harvey P. Dale, May 20 2016 *)
  • PARI
    a(n) = sum(i = 0, n-1, issquarefree(n+i)); \\ Amiram Eldar, Feb 25 2025

Formula

a(n) = Sum_{j=0..n-1} abs(mu(n+j)).
a(1) = 1; a(n + 1) = a(n) - issquarefree(n) + issquarefree(2n-2) + issquarefree(2n-1) for n > 0. - David A. Corneth, May 20 2016
a(n) ~ n/zeta(2). - Amiram Eldar, Feb 25 2025

A086463 Decimal expansion of Pi^2/18.

Original entry on oeis.org

5, 4, 8, 3, 1, 1, 3, 5, 5, 6, 1, 6, 0, 7, 5, 4, 7, 8, 8, 2, 4, 1, 3, 8, 3, 8, 8, 8, 8, 2, 0, 0, 8, 3, 9, 6, 4, 0, 6, 3, 1, 6, 6, 3, 3, 7, 3, 5, 5, 9, 9, 4, 7, 9, 2, 4, 5, 1, 8, 6, 0, 7, 6, 4, 5, 6, 6, 6, 9, 1, 5, 6, 8, 0, 1, 0, 6, 6, 9, 5, 7, 9, 4, 4, 5, 4, 2, 9, 6, 6, 8, 7, 3, 2, 5, 2, 9, 0, 1, 7, 6, 8
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2003

Keywords

Comments

The sequence of repeating coefficients [1,-1,-2,-1,1,2] in the sum in the formula section, is equal to the 6th column in A191898. - Mats Granvik, Mar 19 2012

Examples

			0.548311355616075478824138388882008396406316633735...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.
  • A. Holroyd, Sharp Metastability Threshold for Two-Dimensional Bootstrap Percolation, Prob. Th. and Related Fields 125, 195-224, 2003.

Crossrefs

Programs

Formula

Sum[1/n^2/Binomial[2n,n], {n,Infinity}].
Pi^2/18 = A013661/3 = Sum[1/(i+0)^2 - 1/(i+1)^2 - 2/(i+2)^2 - 1/(i+3)^2 + 1/(i+4)^2 + 2/(i+5)^2, {i =1, 7, 13, 19, 25,.. infinity, stride of 6}]. - Mats Granvik, Mar 19 2012
Equals Sum_{k>=1} (H(k) - 2*H(2k))/((-3^k)*k). See Liu. - Michel Marcus, Feb 11 2020
Equals Sum_{k>=1} A007814(k)/k^2. - Amiram Eldar, Jul 13 2020
Equals (2/9) * Sum_{k>=0} (-1)^k*(7*k+5)*k!^3/((2*k+1)*(3*k+2)!) [Gosper 1974] - R. J. Mathar, Feb 07 2024
Continued fraction expansion: 1/(2 - 2/(13 - 48/(34 - 270/(65 - ... - 2*(2*n - 1)*n^3/(5*n^2 + 6*n + 2 - ... ))))). See A130549. - Peter Bala, Feb 16 2024

A229099 Decimal expansion of 1 - 6/Pi^2.

Original entry on oeis.org

3, 9, 2, 0, 7, 2, 8, 9, 8, 1, 4, 5, 9, 7, 3, 3, 7, 1, 3, 3, 6, 7, 2, 3, 2, 2, 0, 7, 4, 1, 6, 3, 4, 1, 6, 6, 5, 7, 3, 8, 4, 7, 3, 5, 1, 9, 6, 6, 5, 2, 0, 7, 0, 6, 9, 2, 6, 3, 4, 5, 8, 0, 8, 6, 3, 4, 9, 6, 1, 2, 7, 4, 2, 2, 6, 5, 8, 7, 3, 5, 2, 8, 5, 2, 7, 4, 4, 3, 5, 6, 4, 4
Offset: 0

Views

Author

Keywords

Comments

Probability that a random number is not squarefree; probability that two random numbers have a common divisor greater than 1.

Examples

			0.39207289814597337133672322074163416657384735196652070692634580863496...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1-1/Zeta[2],10,90][[1]] (* Stefano Spezia, Feb 21 2025 *)
  • PARI
    1-6/Pi^2

Formula

Equals 1 - 1/zeta(2). - Stefano Spezia, Feb 21 2025

A104141 Decimal expansion of 3/Pi^2.

Original entry on oeis.org

3, 0, 3, 9, 6, 3, 5, 5, 0, 9, 2, 7, 0, 1, 3, 3, 1, 4, 3, 3, 1, 6, 3, 8, 3, 8, 9, 6, 2, 9, 1, 8, 2, 9, 1, 6, 7, 1, 3, 0, 7, 6, 3, 2, 4, 0, 1, 6, 7, 3, 9, 6, 4, 6, 5, 3, 6, 8, 2, 7, 0, 9, 5, 6, 8, 2, 5, 1, 9, 3, 6, 2, 8, 8, 6, 7, 0, 6, 3, 2, 3, 5, 7, 3, 6, 2, 7, 8, 2, 1, 7, 7, 6, 8, 6, 5, 5, 1, 2, 8
Offset: 0

Views

Author

Lekraj Beedassy, Mar 07 2005

Keywords

Comments

3/Pi^2 is the limit of (Sum_{k=1..n} phi(k))/n^2, where phi(k) is Euler's totient A000010(k), i.e., of A002088(n)/A000290(n) as n tends to infinity.
The previous comment in the context of Farey series means that the length of the n-th Farey series can be approximated by multiplying this constant by n^2, "and that the approximation gets proportionally better as n gets larger", according to Conway and Guy. - Alonso del Arte, May 28 2011
The asymptotic density of the sequences of squarefree numbers with even number of prime factors (A030229), odd number of prime factors (A030059), and coprime to 6 (A276378). - Amiram Eldar, May 22 2020

Examples

			3/Pi^2 = 0.303963550927013314331638389629...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, p. 156.
  • L. E. Dickson, History of the Theory of Numbers, Vol. I pp. 126 Chelsea NY 1966.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 184.

Crossrefs

Programs

Formula

Equals Sum_{n>=1} 1/A039956(n)^2. - Amiram Eldar, May 22 2020
From Terry D. Grant, Oct 31 2020: (Start)
Equals (-1)*zeta(0)/zeta(2).
Equals 1/(zeta(2)/2).
Equals 1/A195055.
Equals (1/2)*Sum_{k>=1} mu(k)/k^2. (End)
From Hugo Pfoertner, Apr 23 2024: (Start)
Equals A059956/2.
Equals A082020/5. (End)

Extensions

More terms from Ryan Propper, Aug 04 2005

A327527 Number of uniform divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 5, 2, 4, 4, 5, 2, 5, 2, 5, 4, 4, 2, 6, 3, 4, 4, 5, 2, 8, 2, 6, 4, 4, 4, 7, 2, 4, 4, 6, 2, 8, 2, 5, 5, 4, 2, 7, 3, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 9, 2, 4, 5, 7, 4, 8, 2, 5, 4, 8, 2, 8, 2, 4, 5, 5, 4, 8, 2, 7, 5, 4, 2, 9, 4, 4, 4, 6, 2, 9, 4, 5, 4, 4, 4, 8, 2, 5, 5, 7, 2, 8, 2, 6, 8
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2019

Keywords

Comments

A number is uniform if its prime multiplicities are all equal, meaning it is a power of a squarefree number. Uniform numbers are listed in A072774. The maximum uniform divisor of n is A327526(n).

Examples

			The uniform divisors of 40 are {1, 2, 4, 5, 8, 10}, so a(40) = 6.
		

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],SameQ@@Last/@FactorInteger[#]&]],{n,100}]
    a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, 1 + Total[2^Accumulate[Count[e, #] & /@ Range[Max[e], 1, -1]] - 1]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Dec 19 2023 *)
  • PARI
    isA072774(n) = { ispower(n, , &n); issquarefree(n); }; \\ From A072774
    A327527(n) = sumdiv(n,d,isA072774(d)); \\ Antti Karttunen, Nov 13 2021

Formula

From Amiram Eldar, Dec 19 2023: (Start)
a(n) = A034444(n) + A368251(n).
Sum_{k=1..n} a(k) ~ (n/zeta(2)) * (log(n) + 2*gamma - 1 - 2*zeta'(2)/zeta(2) + c * zeta(2)), where gamma is Euler's constant (A001620) and c = A368250. (End)

Extensions

Data section extended up to 105 terms by Antti Karttunen, Nov 13 2021

A000026 Mosaic numbers or multiplicative projection of n: if n = Product (p_j^k_j) then a(n) = Product (p_j * k_j).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 6, 6, 10, 11, 12, 13, 14, 15, 8, 17, 12, 19, 20, 21, 22, 23, 18, 10, 26, 9, 28, 29, 30, 31, 10, 33, 34, 35, 24, 37, 38, 39, 30, 41, 42, 43, 44, 30, 46, 47, 24, 14, 20, 51, 52, 53, 18, 55, 42, 57, 58, 59, 60, 61, 62, 42, 12, 65, 66, 67, 68, 69, 70, 71, 36
Offset: 1

Views

Author

Keywords

Comments

a(n) = n if n is squarefree.
a(2n) = 2n if and only if n is squarefree. - Peter Munn, Feb 05 2017

Examples

			24 = 2^3*3^1, a(24) = 2*3*3*1 = 18.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000026 n = f a000040_list n 1 (0^(n-1)) 1 where
       f _  1 q e y  = y * e * q
       f ps'@(p:ps) x q e y
         | m == 0    = f ps' x' p (e+1) y
         | e > 0     = f ps x q 0 (y * e * q)
         | x < p * p = f ps' 1 x 1 y
         | otherwise = f ps x 1 0 y
         where (x', m) = divMod x p
    a000026_list = map a000026 [1..]
    -- Reinhard Zumkeller, Aug 27 2011
    
  • Maple
    A000026 := proc(n) local e,j; e := ifactors(n)[2]:
    mul(e[j][1]*e[j][2], j=1..nops(e)) end:
    seq(A000026(n), n=1..80); # Peter Luschny, Jan 17 2011
  • Mathematica
    Array[ Times@@Flatten[ FactorInteger[ # ] ]&, 100 ]
  • PARI
    a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],f[k,1]*f[k,2]))
    
  • PARI
    a(n)=my(f=factor(n)); factorback(f[,1])*factorback(f[,2]) \\ Charles R Greathouse IV, Apr 04 2016
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): f = factorint(n); return prod(p*f[p] for p in f)
    print([a(n) for n in range(1, 73)]) # Michael S. Branicky, May 27 2021

Formula

n = Product (p_j^k_j) -> a(n) = Product (p_j * k_j).
Multiplicative with a(p^e) = p*e. - David W. Wilson, Aug 01 2001
a(n) = A005361(n) * A007947(n). - Enrique Pérez Herrero, Jun 24 2010
a(A193551(n)) = n and a(m) != n for m < A193551(n). - Reinhard Zumkeller, Aug 27 2011
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)^2/2) * Product_{p prime} (1 - 3/p^2 + 2/p^3 + 1/p^4 - 1/p^5) = 0.4175724194... . - Amiram Eldar, Oct 25 2022

Extensions

Example, program, definition, comments and more terms added by Olivier Gérard (02/99).

A113319 Decimal expansion of Sum_{k>=0} 1/(k^2+1).

Original entry on oeis.org

2, 0, 7, 6, 6, 7, 4, 0, 4, 7, 4, 6, 8, 5, 8, 1, 1, 7, 4, 1, 3, 4, 0, 5, 0, 7, 9, 4, 7, 5, 0, 0, 0, 0, 4, 9, 0, 4, 4, 5, 6, 5, 6, 2, 6, 6, 4, 0, 3, 8, 1, 6, 6, 6, 5, 5, 7, 5, 0, 6, 2, 4, 8, 4, 3, 9, 0, 1, 5, 4, 2, 4, 7, 9, 1, 8, 3, 1, 0, 0, 2, 1, 7, 4, 3, 5, 6, 5, 5, 5, 1, 7, 5, 9, 3, 9, 5, 4, 9, 1, 8, 7, 6, 5, 1
Offset: 1

Views

Author

Benoit Cloitre, Jan 07 2006

Keywords

Comments

Known to be transcendental. After n=2 it is the same as A100554(n).
Imaginary part of psi(I) (for the real part, see A248177). - Stanislav Sykora, Oct 03 2014

Examples

			2.076674047468581174134050794750000490445656266403816665575062484390...
		

References

  • Michel Waldschmidt, Elliptic functions and transcendance, Surveys in number theory, 143-188, Dev. Math., 17, Springer, New York, 2008.

Crossrefs

Cf. A013661 (Sum_{i>=1} 1/i^2), A232883 (Sum_{i>=0} 1/(2*i^2+1)). - Bruno Berselli, Dec 02 2013
Cf. A248177.
Essentially the same as A100554 and A259171.

Programs

Formula

Equals 1/2 + Pi /(2*tanh(Pi)).
Equals 1+Integral_{x >= 0} sin(x)/(exp(x)-1) dx. - Robert FERREOL, Jan 12 2016.
Equals Sum_{k>=0} (-1)^(k+1)*(zeta(2*k) - 1). - Amiram Eldar, Apr 28 2025

Extensions

Offset changed from 0 to 1 by Bruno Berselli, Dec 02 2013

A175647 Decimal expansion of the Product_{primes p == 1 (mod 4)} 1/(1-1/p^2).

Original entry on oeis.org

1, 0, 5, 6, 1, 8, 2, 1, 2, 1, 7, 2, 6, 8, 1, 6, 1, 4, 1, 7, 3, 7, 9, 3, 0, 7, 6, 5, 3, 1, 6, 2, 1, 9, 8, 9, 0, 5, 8, 7, 5, 8, 0, 4, 2, 5, 4, 6, 0, 7, 0, 8, 0, 1, 2, 0, 0, 4, 3, 0, 6, 1, 9, 8, 3, 0, 2, 7, 9, 2, 8, 1, 6, 0, 6, 2, 2, 2, 6, 9, 3, 0, 4, 8, 9, 5, 1, 2, 9, 5, 8, 3, 7, 2, 9, 1, 5, 9, 7, 1, 8, 4, 7, 5, 0
Offset: 1

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The Euler product of the Riemann zeta function at 2 restricted to primes in A002144, which is the inverse of the infinite product (1-1/5^2)*(1-1/13^2)*(1-1/17^2)*(1-1/29^2)*...
There is a complementary Product_{primes p == 3 (mod 4)} 1/(1-1/p^2) = 1.16807558541051428866969673706404040136467... such that (this constant here)*1.16807.../(1-1/2^2) = zeta(2) = A013661.

Examples

			1.0561821217268161417379307653162198905...
		

Crossrefs

Programs

  • Mathematica
    digits = 105;
    LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/  DirichletBeta[2^n])^(1/2^(n+1)), {n, 1, 24}, WorkingPrecision -> digits+5];
    RealDigits[1/(4*LandauRamanujanK/Pi)^2, 10, digits][[1]] (* Jean-François Alcover, Jan 12 2021 *)

Formula

Equals 1/A088539. - Vaclav Kotesovec, May 05 2020
From Amiram Eldar, Sep 27 2020: (Start)
Equals Sum_{k>=1} 1/A004613(k)^2.
The complementary product equals Sum_{k>=1} 1/A004614(k)^2. (End)

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A306633 Decimal expansion of zeta(2)/zeta(3).

Original entry on oeis.org

1, 3, 6, 8, 4, 3, 2, 7, 7, 7, 6, 2, 0, 2, 0, 5, 8, 7, 5, 7, 3, 6, 7, 6, 5, 8, 5, 3, 9, 8, 4, 7, 9, 1, 9, 4, 1, 1, 3, 0, 8, 1, 3, 9, 1, 4, 6, 5, 2, 4, 1, 3, 9, 2, 2, 0, 7, 7, 3, 5, 3, 1, 9, 2, 7, 6, 8, 3, 4, 4, 9, 7, 9, 7, 8, 7, 6, 0, 1, 9, 4, 2, 2, 8, 2, 2, 0
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2019

Keywords

Comments

Equals the asymptotic mean of the unitary abundancy index, lim_{n->oo} (1/n) * Sum{k=1..n} usigma(k)/k, where usigma(k) is the sum of the unitary divisors of k (A034448).
From Amiram Eldar, May 12 2023: (Start)
Equals the asymptotic mean of the abundancy index of the squarefree numbers (A005117).
In general, the asymptotic mean of the abundancy index of the k-free numbers (numbers that are not divisible by a k-th power other than 1) is zeta(2)/zeta(k+1) (Jakimczuk and Lalín, 2022). (End)

Examples

			1.3684327776202058757367658539847919411308139146524...
		

Crossrefs

Cf. A000010, A001615, A002117, A005117, A013661 (asymptotic mean of sigma(k)/k), A034448, A065463, A253905, A322887.

Programs

  • Mathematica
    RealDigits[Zeta[2]/Zeta[3],10, 100][[1]]
  • PARI
    zeta(2)/zeta(3) \\ Michel Marcus, Mar 04 2019

Formula

Equals A013661/A002117 = 1/A253905.
Equals Sum_{k>=1} phi(k)/k^3, where phi is the Euler totient function (A000010). - Amiram Eldar, Jun 23 2020
Equals Product_{p prime} (1 + 1/(p*(p+1))). - Amiram Eldar, Aug 10 2020
Equals Sum_{k>=1} mu(k)^2/(k*psi(k)) (the sum of reciprocals of the squarefree numbers multiplied by their Dedekind psi function values, A001615). - Amiram Eldar, Aug 18 2020
Previous Showing 41-50 of 473 results. Next