cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 117 results. Next

A136677 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^6.

Original entry on oeis.org

1, 63, 45991, 2942695, 45982595359, 5109066151, 601081707598999, 38469080386820311, 252396118308232060471, 252395862211967012407, 447134922152359540530757327, 447134770212444455649757327, 2158234586764514215343657417779543, 308319185132349039219686748825649
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

p divides a(p-1) for prime p > 2. a(n) is prime for n = {19, 47, 164, ...} = A136686.
Lim_{n -> infinity} a(n)/A334605(n) = A275703 = (31/32)*A013664. - Petros Hadjicostas, May 07 2020

Examples

			The first few fractions are 1, 63/64, 45991/46656, 2942695/2985984, 45982595359/46656000000, 5109066151/5184000000, ... = a(n)/A334605(n). - _Petros Hadjicostas_, May 07 2020
		

Crossrefs

Programs

  • Mathematica
    Table[ Numerator[ Sum[ (-1)^(k+1)/k^6, {k,1,n} ] ], {n,1,30} ]
    Accumulate[Table[(-1)^(k+1)/k^6,{k,20}]]//Numerator (* Harvey P. Dale, Aug 21 2023 *)

A343978 Number of ordered 6-tuples (a,b,c,d,e,f) with gcd(a,b,c,d,e,f)=1 (1<= {a,b,c,d,e,f} <= n).

Original entry on oeis.org

1, 63, 727, 4031, 15559, 45863, 116855, 257983, 526615, 983583, 1755143, 2935231, 4776055, 7407727, 11256623, 16498719, 23859071, 33434063, 46467719, 62949975, 84644439, 111486599, 146142583, 187854119, 240880239, 303814503, 382049919, 473813703, 586746719
Offset: 1

Views

Author

Karl-Heinz Hofmann, May 06 2021

Keywords

References

  • Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.

Crossrefs

Programs

  • PARI
    a(n)={sum(k=1, n+1, moebius(k)*(n\k)^6)} \\ Andrew Howroyd, May 08 2021
    
  • Python
    from labmath import mobius
    def A343978(n): return sum(mobius(k)*(n//k)**6 for k in range(1, n+1))
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A343978(n):
        if n == 0:
            return 0
        c, j, k1 = 1, 2, n//2
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A343978(k1)
            j, k1 = j2, n//j2
        return n*(n**5-1)-c+j # Chai Wah Wu, May 17 2021

Formula

a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^6.
Lim_{n->infinity} a(n)/n^6 = 1/zeta(6) = A343359 = 945/Pi^6.
a(n) = n^6 - Sum_{k=2..n} a(floor(n/k)). - Seiichi Manyama, Sep 13 2024

Extensions

Edited by N. J. A. Sloane, Jun 13 2021

A351268 Sum of the 5th powers of the squarefree divisors of n.

Original entry on oeis.org

1, 33, 244, 33, 3126, 8052, 16808, 33, 244, 103158, 161052, 8052, 371294, 554664, 762744, 33, 1419858, 8052, 2476100, 103158, 4101152, 5314716, 6436344, 8052, 3126, 12252702, 244, 554664, 20511150, 25170552, 28629152, 33, 39296688, 46855314, 52541808, 8052, 69343958
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Inverse Möbius transform of n^5 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023

Examples

			a(4) = 33; a(4) = Sum_{d|4} d^5 * mu(d)^2 = 1^5*1 + 2^5*1 + 4^4*0 = 33.
		

Crossrefs

Cf. A008683 (mu), A013661, A013664.
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), this sequence (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^5); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)

Formula

a(n) = Sum_{d|n} d^5 * mu(d)^2.
Multiplicative with a(p^e) = 1 + p^5. - Amiram Eldar, Feb 06 2022
G.f.: Sum_{k>=1} mu(k)^2 * k^5 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^6, where c = zeta(6)/(6*zeta(2)) = Pi^4/945 = 0.103078... . - Amiram Eldar, Nov 10 2022

A351602 a(n) = n^4 * Sum_{d^2|n} 1 / d^4.

Original entry on oeis.org

1, 16, 81, 272, 625, 1296, 2401, 4352, 6642, 10000, 14641, 22032, 28561, 38416, 50625, 69888, 83521, 106272, 130321, 170000, 194481, 234256, 279841, 352512, 391250, 456976, 538002, 653072, 707281, 810000, 923521, 1118208, 1185921, 1336336, 1500625, 1806624, 1874161, 2085136
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), this sequence (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
Cf. A013664.

Programs

  • Mathematica
    f[p_, e_] := p^4*(p^(4*e) - p^(4*Floor[(e - 1)/2]))/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^4*sumdiv(n, d, if (issquare(d), 1/d^2)); \\ Michel Marcus, Feb 15 2022

Formula

Multiplicative with a(p^e) = p^4*(p^(4*e) - p^(4*floor((e-1)/2)))/(p^4 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(6)/5 = Pi^6/4725 = 0.203468... . - Amiram Eldar, Nov 13 2022

A352033 Sum of the 5th powers of the odd proper divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 244, 1, 1, 244, 3126, 1, 244, 1, 16808, 3369, 1, 1, 59293, 1, 3126, 17051, 161052, 1, 244, 3126, 371294, 59293, 16808, 1, 762744, 1, 1, 161295, 1419858, 19933, 59293, 1, 2476100, 371537, 3126, 1, 4101152, 1, 161052, 821793, 6436344, 1, 244, 16808, 9768751
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 3126; a(10) = Sum_{d|10, d<10, d odd} d^5 = 1^5 + 5^5 = 3126.
		

Crossrefs

Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), this sequence (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).

Programs

  • Mathematica
    Table[Total[Select[Most[Divisors[n]],OddQ]^5],{n,50}] (* Harvey P. Dale, May 01 2023 *)
    f[2, e_] := 1; f[p_, e_] := (p^(5*e+5) - 1)/(p^5 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^5, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)

Formula

a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^5 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
a(n) = A051002(n) - n^5*A000035(n).
Sum_{k=1..n} a(k) ~ c * n^6, where c = (zeta(6)-1)/12 = 0.0014452551... . (End)

A352051 Sum of the 5th powers of the divisor complements of the odd proper divisors of n.

Original entry on oeis.org

0, 32, 243, 1024, 3125, 7808, 16807, 32768, 59292, 100032, 161051, 249856, 371293, 537856, 762743, 1048576, 1419857, 1897376, 2476099, 3201024, 4101151, 5153664, 6436343, 7995392, 9768750, 11881408, 14408199, 17211392, 20511149, 24407808, 28629151, 33554432, 39296687
Offset: 1

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 10^5 * Sum_{d|10, d<10, d odd} 1 / d^5 = 10^5 * (1/1^5 + 1/5^5) = 100032.
		

Crossrefs

Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), this sequence (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).

Programs

  • Maple
    f:= proc(n) local m,d;
          m:= n/2^padic:-ordp(n,2);
          add((n/d)^5, d = select(`<`,numtheory:-divisors(m),n))
    end proc:
    map(f, [$1..40]); # Robert Israel, Apr 03 2023
  • Mathematica
    A352051[n_]:=DivisorSum[n,1/#^5&,#A352051,50] (* Paolo Xausa, Aug 09 2023 *)
    a[n_] := DivisorSigma[-5, n/2^IntegerExponent[n, 2]] * n^5 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
  • PARI
    a(n) = n^5 * sigma(n >> valuation(n, 2), -5) - n % 2; \\ Amiram Eldar, Oct 13 2023

Formula

a(n) = n^5 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^5 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 18 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A051002(n) * A006519(n)^5 - A000035(n).
Sum_{k=1..n} a(k) = c * n^6 / 6, where c = 63*zeta(6)/64 = 1.00144707... . (End)

A068468 Decimal expansion of zeta(6)/(zeta(2)*zeta(3)).

Original entry on oeis.org

5, 1, 4, 5, 1, 0, 1, 0, 1, 5, 0, 8, 3, 9, 3, 1, 2, 3, 0, 7, 3, 2, 8, 1, 1, 8, 6, 7, 7, 2, 7, 8, 9, 6, 1, 6, 5, 0, 6, 5, 6, 5, 7, 4, 6, 9, 0, 7, 1, 2, 8, 0, 1, 8, 3, 3, 7, 5, 4, 3, 4, 5, 7, 2, 2, 2, 4, 5, 5, 1, 4, 9, 4, 9, 3, 8, 2, 4, 9, 4, 6, 7, 7, 3, 2, 3, 8, 4, 2, 4, 7, 8, 6, 8, 7, 5, 9, 7, 4, 8, 0, 8, 4, 6
Offset: 0

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			0.514510101508393123073281186772789616506565746907128.....
		

Crossrefs

Cf. A013661 (zeta(2)), A002117 (zeta(3)), A013664 (zeta(6)), A082695 (inverse).

Programs

  • Magma
    R:=RealField(150); SetDefaultRealField(R); L:=RiemannZeta(); 2*Pi(R)^4/(315*Evaluate(L,3)); // G. C. Greubel, Mar 11 2018
  • Mathematica
    RealDigits[Zeta[6]/(Zeta[2]*Zeta[3]), 10, 100][[1]] (* G. C. Greubel, Mar 11 2018 *)
  • PARI
    default(realprecision, 100); zeta(6)/(zeta(2)*zeta(3)) \\ G. C. Greubel, Mar 11 2018
    

Formula

From Amiram Eldar, Nov 07 2022: (Start)
Equals 2*Pi^4/(315*zeta(3)).
Equals Product_{p prime} (1 - 1/(p^2-p+1)). (End)

A096960 a(n) = Sum_{0

Original entry on oeis.org

1, 32, 244, 1024, 3126, 7808, 16808, 32768, 59293, 100032, 161052, 249856, 371294, 537856, 762744, 1048576, 1419858, 1897376, 2476100, 3201024, 4101152, 5153664, 6436344, 7995392, 9768751, 11881408, 14408200, 17211392, 20511150
Offset: 1

Author

Ralf Stephan, Jul 18 2004

Keywords

Examples

			G.f. = q + 32*q^2 + 244*q^3 + 1024*q^4 + 3126*q^5 + 7808*q^6 + 16808*q^7 + 32768*q^8 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(2), 6), 30) [2]; /* Michael Somos, Nov 30 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d^5 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 + EllipticTheta[ 2, 0, q]^4) EllipticTheta[ 2, 0, q^(1/2)]^8 / 256, {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^5))};
    
  • Sage
    ModularForms( Gamma0(2), 6, prec=33).gen(1).coefficients(30) # Michael Somos, Jun 04 2013
    

Formula

G.f.: Sum {k>0} k^5 * x^k / (1 - x^(2*k)).
From Amiram Eldar, Nov 01 2022: (Start)
Multiplicative with a(2^e) = 2^(5*e) and a(p^e) = (p^(5*e+5)-1)/(p^5-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^6, where c = 21*zeta(6)/128 = 0.166907... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-5)*(1-1/2^s). - Amiram Eldar, Jan 08 2023

A293904 Decimal expansion of zeta(21).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 4, 7, 6, 9, 3, 2, 9, 8, 6, 7, 8, 7, 8, 0, 6, 4, 6, 3, 1, 1, 6, 7, 1, 9, 6, 0, 4, 3, 7, 3, 0, 4, 5, 9, 6, 6, 4, 4, 6, 6, 9, 4, 7, 8, 4, 9, 3, 7, 6, 0, 0, 2, 0, 7, 4, 8, 7, 3, 7, 6, 5, 9, 6, 8, 3, 9, 0, 8, 7, 8, 9, 8, 1, 5, 9, 8, 3, 3, 8, 7, 6, 6
Offset: 1

Author

Frank Ellermann, Oct 19 2017

Keywords

Comments

Web searches find 1.0000004769329867878 in Python tools. Simon Plouffe published 1000 digits for zeta(9) up to zeta(2051) many years ago.

Examples

			1.000000476932986787806...
		

Programs

  • Mathematica
    RealDigits[Zeta[21], 10, 100][[1]] (* Amiram Eldar, May 31 2021 *)

A372962 a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} ( n/gcd(x_1, x_2, x_3, n) )^2.

Original entry on oeis.org

1, 29, 235, 925, 3101, 6815, 16759, 29597, 57097, 89929, 160931, 217375, 371125, 486011, 728735, 947101, 1419569, 1655813, 2475739, 2868425, 3938365, 4666999, 6435815, 6955295, 9690601, 10762625, 13874563, 15502075, 20510309, 21133315, 28628191, 30307229, 37818785
Offset: 1

Author

Seiichi Manyama, May 18 2024

Keywords

Programs

  • Mathematica
    f[p_, e_] := (p^(5*e+5) - p^(5*e+2) + p^2 - 1)/(p^5-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^2*sigma(d, 5));

Formula

a(n) = Sum_{d|n} mu(n/d) * (n/d)^2 * sigma_5(d).
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = (p^(5*e+5) - p^(5*e+2) + p^2 - 1)/(p^5-1).
Dirichlet g.f.: zeta(s)*zeta(s-5)/zeta(s-2).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(6)/zeta(4) = 2*Pi^2/21 = 0.939962323... (1/A088246). (End)
a(n) = Sum_{d|n} phi(n/d) * (n/d)^4 * sigma_4(d^2)/sigma_2(d^2). - Seiichi Manyama, May 24 2024
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} ( gcd(x_1, n)/gcd(x_1, x_2, x_3, n) )^3. - Seiichi Manyama, May 25 2024
Previous Showing 21-30 of 117 results. Next