cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 97 results. Next

A013969 a(n) = sigma_21(n), the sum of the 21st powers of the divisors of n.

Original entry on oeis.org

1, 2097153, 10460353204, 4398048608257, 476837158203126, 21936961102828212, 558545864083284008, 9223376434903384065, 109418989141972712413, 1000000476837160300278, 7400249944258160101212, 46005141850728850805428, 247064529073450392704414, 1171356134499851307229224
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

Formula

G.f.: Sum_{k>=1} k^21*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Sum_{n>=1} a(n)/exp(2*Pi*n) = 77683/552 = Bernoulli(22)/44. - Vaclav Kotesovec, May 07 2023
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(21*e+21)-1)/(p^21-1).
Dirichlet g.f.: zeta(s)*zeta(s-21).
Sum_{k=1..n} a(k) = zeta(22) * n^22 / 22 + O(n^23). (End)

A321810 Sum of 6th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 730, 1, 15626, 730, 117650, 1, 532171, 15626, 1771562, 730, 4826810, 117650, 11406980, 1, 24137570, 532171, 47045882, 15626, 85884500, 1771562, 148035890, 730, 244156251, 4826810, 387952660, 117650, 594823322, 11406980, 887503682
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=6 of A285425.
Cf. A050999, A051000, A051001, A051002, A321811 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(6*e + 6) - 1)/(p^6 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 02 2022 *)
  • PARI
    apply( A321810(n)=sigma(n>>valuation(n,2),6), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321810(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),6)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013954(A000265(n)) = sigma_6(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^6*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(6*e+6)-1)/(p^6-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^7, where c = zeta(7)/14 = 0.0720249... . (End)
a(n) + a(n/2)*2^6 = A013954(n) where a(.)=0 for non-integer arguments. - R. J. Mathar, Aug 15 2023

A351311 Sum of the 6th powers of the square divisors of n.

Original entry on oeis.org

1, 1, 1, 4097, 1, 1, 1, 4097, 531442, 1, 1, 4097, 1, 1, 1, 16781313, 1, 531442, 1, 4097, 1, 1, 1, 4097, 244140626, 1, 531442, 4097, 1, 1, 1, 16781313, 1, 1, 1, 2177317874, 1, 1, 1, 4097, 1, 1, 1, 4097, 531442, 1, 1, 16781313, 13841287202, 244140626, 1, 4097, 1, 531442, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Inverse Möbius transform of n^6 * c(n), where c(n) is the characteristic function of squares (A010052). - Wesley Ivan Hurt, Jun 21 2024

Examples

			a(16) = 16781313; a(16) = Sum_{d^2|16} (d^2)^6 = (1^2)^6 + (2^2)^6 + (4^2)^6 = 16781313.
		

Crossrefs

Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), this sequence (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).

Programs

  • Mathematica
    f[p_, e_] := (p^(12*(1 + Floor[e/2])) - 1)/(p^12 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 07 2022 *)

Formula

a(n) = Sum_{d^2|n} (d^2)^6.
Multiplicative with a(p) = (p^(12*(1+floor(e/2))) - 1)/(p^12 - 1). - Amiram Eldar, Feb 07 2022
From Amiram Eldar, Sep 20 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-12).
Sum_{k=1..n} a(k) ~ (zeta(13/2)/13) * n^(13/2). (End)
a(n) = Sum_{d|n} d^6 * c(d), where c = A010052. - Wesley Ivan Hurt, Jun 21 2024
a(n) = Sum_{d|n} lambda(d)*d^6*sigma_6(n/d), where lambda = A008836. - Ridouane Oudra, Jul 19 2025

A013960 a(n) = sigma_12(n), the sum of the 12th powers of the divisors of n.

Original entry on oeis.org

1, 4097, 531442, 16781313, 244140626, 2177317874, 13841287202, 68736258049, 282430067923, 1000244144722, 3138428376722, 8918294543346, 23298085122482, 56707753666594, 129746582562692, 281543712968705, 582622237229762, 1157115988280531, 2213314919066162
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

  • Magma
    [DivisorSigma(12, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
    
  • Mathematica
    DivisorSigma[12,Range[20]] (* Harvey P. Dale, Jan 28 2015 *)
  • PARI
    my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^12*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
    
  • PARI
    a(n) = sigma(n, 12); \\ Amiram Eldar, Oct 29 2023
  • Sage
    [sigma(n,12) for n in range(1,17)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^12*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-12)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(12*e+12)-1)/(p^12-1).
Sum_{k=1..n} a(k) = zeta(13) * n^13 / 13 + O(n^14). (End)

A013965 a(n) = sigma_17(n), the sum of the 17th powers of the divisors of n.

Original entry on oeis.org

1, 131073, 129140164, 17180000257, 762939453126, 16926788715972, 232630513987208, 2251816993685505, 16677181828806733, 100000762939584198, 505447028499293772, 2218628050709022148, 8650415919381337934, 30491579359845314184, 98526126098761952664
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

  • Magma
    [DivisorSigma(17, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
    
  • Mathematica
    DivisorSigma[17,Range[20]] (* Harvey P. Dale, May 30 2013 *)
  • PARI
    my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^17*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
    
  • PARI
    a(n) = sigma(n, 17); \\ Amiram Eldar, Oct 29 2023
  • Sage
    [sigma(n,17)for n in range(1,14)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^17*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-17)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 43867/28728, also equals Bernoulli(18)/36. - Simon Plouffe, May 06 2023
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(17*e+17)-1)/(p^17-1).
Sum_{k=1..n} a(k) = zeta(18) * n^18 / 18 + O(n^19). (End)

A015764 Numbers n such that phi(n) | sigma_6(n).

Original entry on oeis.org

1, 2, 3, 6, 22, 33, 66, 262, 750, 786, 8646, 56946, 222386, 626406, 667158, 737286, 1223123, 2446246, 2939046, 3669369, 6804006, 7338738, 27798250, 31684246, 41697375, 44970486, 53817126, 62128086, 76745867, 83394750, 95052738, 139991987, 153491734, 174684203
Offset: 1

Views

Author

Keywords

Comments

sigma_6(n) is the sum of the 6th powers of the divisors of n.

Crossrefs

Programs

  • Maple
    with(numtheory): A015764:=n->`if`(sigma[6](n) mod phi(n) = 0,n,NULL): seq(A015764(n), n=1..10^5); # Wesley Ivan Hurt, Mar 10 2015
  • Mathematica
    Select[Range[10^5], Divisible[DivisorSigma[6, #], EulerPhi[#]] &] (* Amiram Eldar, Jan 20 2019 *)

Extensions

More terms from Labos Elemer, May 03 2002
a(23)-a(34) from Amiram Eldar, Jan 20 2019

A082245 Sum of (n-1)-th powers of divisors of n.

Original entry on oeis.org

1, 3, 10, 73, 626, 8052, 117650, 2113665, 43053283, 1001953638, 25937424602, 743375541244, 23298085122482, 793811662272744, 29192932133689220, 1152956690052710401, 48661191875666868482, 2185928253847184914509
Offset: 1

Views

Author

Reinhard Zumkeller, May 22 2003

Keywords

Comments

a(n) = t(n,n-1), t as defined in A082771;
a(1)=A000005(1), a(2)=A000203(2), a(3)=A001157(3), a(4)=A001158(4), a(5)=A001159(5), a(6)=A001160(6), a(7)=A013954(7), a(8)=A013955(8).

Examples

			a(6) = 1^5 + 2^5 + 3^5 + 6^5 = 1 + 32 + 243 + 7776 = 8052.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(n-1, n): n in [1..20]]; // G. C. Greubel, Nov 02 2018
  • Mathematica
    Table[Total[Divisors[n]^(n-1)], {n,18}] (* T. D. Noe, Oct 25 2006 *)
    Table[DivisorSigma[n-1,n], {n,1,20}] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    a(n) = sigma(n, n-1); \\ Michel Marcus, Nov 07 2017
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^2))))) \\ Seiichi Manyama, Jun 23 2019
    
  • Sage
    [sigma(n,(n-1))for n in range(1,19)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^(k-1)*x^k/(1 - (k*x)^k). - Ilya Gutkovskiy, Nov 02 2018
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(1/k^2)) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 23 2019
Limit_{n->oo} a(n)/A023887(n-1) = e (A001113) (Sugunamma, 1960). - Amiram Eldar, Apr 15 2021

Extensions

Corrected by T. D. Noe, Oct 25 2006

A301544 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_6(k)).

Original entry on oeis.org

1, 1, 66, 796, 7102, 70178, 702813, 6439533, 56938814, 495807251, 4218728690, 34991240657, 284295574638, 2269120791410, 17804772970005, 137455131596032, 1045354069608726, 7839809431539193, 58027706392726849, 424187792875896932, 3064539107659680502
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), this sequence (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[6, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(8 * 2^(3/8) * Pi * (Zeta(7)/15)^(1/8) * n^(7/8)/7 - Pi*(5/Zeta(7))^(1/8) * n^(1/8) / (504 * 2^(3/8) * 3^(7/8)) + 45*Zeta(7) / (16*Pi^6)) * Zeta(7)^(1/16) / (2^(29/16) * 15^(1/16) * n^(9/16)).
G.f.: exp(Sum_{k>=1} sigma_7(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A013967 a(n) = sigma_19(n), the sum of the 19th powers of the divisors of n.

Original entry on oeis.org

1, 524289, 1162261468, 274878431233, 19073486328126, 609360902796252, 11398895185373144, 144115462954287105, 1350851718835253557, 10000019073486852414, 61159090448414546292, 319480609006403630044, 1461920290375446110678, 5976315357844100294616
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

Formula

G.f.: Sum_{k>=1} k^19*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(19*e+19)-1)/(p^19-1).
Dirichlet g.f.: zeta(s)*zeta(s-19).
Sum_{k=1..n} a(k) = zeta(20) * n^20 / 20 + O(n^21). (End)

A017668 Denominator of sum of -2nd powers of divisors of n.

Original entry on oeis.org

1, 4, 9, 16, 25, 18, 49, 64, 81, 10, 121, 24, 169, 98, 45, 256, 289, 324, 361, 200, 441, 242, 529, 288, 625, 338, 729, 56, 841, 9, 961, 1024, 1089, 578, 49, 432, 1369, 722, 1521, 160, 1681, 441, 1849, 968, 2025, 1058, 2209, 1152, 2401, 500, 2601, 1352, 2809
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 5/4, 10/9, 21/16, 26/25, 25/18, 50/49, 85/64, 91/81, 13/10, 122/121, 35/24, 170/169, ...
		

Crossrefs

Cf. A017667 (numerator).

Programs

  • Magma
    [Denominator(DivisorSigma(2,n)/n^2): n in [1..50]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[Denominator[DivisorSigma[-2, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
    Table[Denominator[DivisorSigma[2, n]/n^2], {n, 1, 50}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    a(n) = denominator(sigma(n, -2)); \\ Michel Marcus, Aug 24 2018
    
  • PARI
    vector(50, n, denominator(sigma(n, 2)/n^2)) \\ G. C. Greubel, Nov 08 2018
    

Formula

Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^2*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
Previous Showing 21-30 of 97 results. Next