cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 46 results. Next

A276454 a(n) = A276452(n) + A276451(n) + A276449(n).

Original entry on oeis.org

1, 2, 22, 464, 13302, 487152, 21475652, 1106550392, 65221981530, 4327577893800, 319187492622012, 25904823495240144, 2294089575287710984, 220132629099295901408, 22751391952803426496488, 2519687900505935894639088, 297684761086123702744203918
Offset: 1

Views

Author

Keywords

Comments

For a definition and examples of this problem see the comment section of A276449.
The present sequence {a(n)} gives the number of all orbits under C_4 of 2-colored n X n square grids with n squares of one color.
See A054772(n, k) for the table of these total C_4 orbit numbers for 2-colored grids with any number k from {0,1,...,n^2} of squares of one color. - Wolfdieter Lang, Oct 02 2016

Examples

			For n = 4 there are A276449(4) = 4 1-orbits, represented by
   + o o +   o + o o   o o + o   o o o o
   o o o o   o o o +   + o o o   o + + o
   o o o o   + o o o   o o o +   o + + o
   + o o +   o o + o   o + o o   o o o o  .
A276451(4) = 12 2-orbits: one of them is
   + o + o   o o o +
   o o o o   + o o o
   o o o o   o o o +
   o + o +   + o o o  ,
and one can take the first one as representative.
A276452(4) = 448 4-orbits: one of them is represented by
   + + + +
   o o o o
   o o o o
   o o o o .
The complete orbit structure for n=4 is 1^4 2^12 4^448, see A276449(4) = 4, A276451(4) = 12, A276452(4) = 448.
a(4) = 448 + 12 + 4 = 464.
A014062(4) = 448*4 + 12*2 + 4*1 = 1820.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4];g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4 + (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2 + f@ n, {n, 17}] (* Michael De Vlieger, Sep 12 2016 *)
  • Python
    from math import comb as binomial
    for j in range(1, 20):
        t = binomial(j * j, j)
        i = j // 2
        if j % 2 == 0:
            d = binomial(2 * i * i, i)
        else:
            d = binomial(2 * i * (i + 1), i)
        a = (t - d) // 4
        if j % 4 == 0:
            c = binomial((j * j // 4), (j // 4))
        elif j % 4 == 1:
            c = binomial(((j - 1) // 2) * ((j - 1) // 2 + 1), ((j - 1) // 4))
        else:
            c = 0
        b = (d - c) // 2
        print(str(j) + " " + str(a + b + c))

Formula

a(n) = A276452(n) + A276451(n) + A276449(n) for n = 1, 2, 3, ...,
A014062(n) = A276452(n)*4 + A276451(n)*2 + A276449(n).
a(n) = A054772(n, 2), n >= 1. - Wolfdieter Lang, Oct 02 2016

Extensions

Edited by Wolfdieter Lang, Oct 02 2016

A290052 Number of X-rays of n X n binary matrices with exactly n ones.

Original entry on oeis.org

1, 1, 4, 23, 139, 860, 5393, 34142, 217717, 1396346, 8997695, 58205686, 377775385, 2458841504, 16043226825, 104901986083, 687221188145, 4509605878736, 29636894936761, 195035340954186, 1285062484293880, 8476508261617168, 55969236979211755, 369900194873712830
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2017

Keywords

Comments

The X-ray of a matrix is defined as the sequence of antidiagonal sums.

Examples

			a(0) = 1: [].
a(1) = 1: 1.
a(2) = 4: 011, 020, 101, 110.
a(3) = 23: 00021, 00111, 00120, 00201, 00210, 00300, 01011, 01020, 01101, 01110, 01200, 02001, 02010, 02100, 10011, 10020, 10101, 10110, 10200, 11001, 11010, 11100, 12000.
		

Crossrefs

Main diagonal of A290057.

Programs

  • Maple
    b:= proc(n, i, t) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
          add(b(n-j, i-t, 1-t), j=0..min(i, n)))))(i*(i+1-t))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Function[m, If[n > m, 0, If[n == m, 1, Sum[b[n - j, i - t, 1 - t], {j, 0, Min[i, n]}]]]][i*(i + 1 - t)];
    a[n_] := b[n, n, 1];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)

Formula

A019589(n) <= a(n) <= A014062(n).
a(n) ~ c * 3^(3*n) / (2^(2*n) * sqrt(n)), where c = 0.153294749730773567280925277269616968259180871352428154276351832424636097919... - Vaclav Kotesovec, Jul 22 2017

A081369 Binomial(n^2, n) reduced mod n^2.

Original entry on oeis.org

0, 2, 3, 12, 5, 12, 7, 56, 9, 40, 11, 108, 13, 84, 90, 240, 17, 144, 19, 80, 315, 220, 23, 72, 25, 312, 27, 560, 29, 0, 31, 992, 759, 544, 770, 720, 37, 684, 1053, 520, 41, 252, 43, 1408, 1125, 1012, 47, 1872, 49, 1200, 918, 624, 53, 1404, 2475, 2744, 2223, 1624, 59
Offset: 1

Views

Author

Labos Elemer, Mar 20 2003

Keywords

Crossrefs

Programs

Formula

a(n)=Mod[C(n^2, n), n^2]

A258371 Triangle read by rows: T(n,k) is number of ways of arranging n indistinguishable points on an n X n square grid such that k rows contain at least one point.

Original entry on oeis.org

1, 2, 4, 3, 54, 27, 4, 408, 1152, 256, 5, 2500, 22500, 25000, 3125, 6, 13830, 315900, 988200, 583200, 46656, 7, 72030, 3709545, 25882780, 40588905, 14823774, 823543, 8, 360304, 39024384, 535754240, 1766195200, 1657012224, 411041792, 16777216
Offset: 1

Views

Author

Adam J.T. Partridge, May 28 2015

Keywords

Comments

Row sums give A014062, n >= 1.
Leading diagonal is A000312, n >= 1.
The triangle t(n,k) = T(n,k)/binomial(n,k) gives the number of ways to place n stones into the k X n grid of squares such that each of the k rows contains at least one stone. See A259051. One can use a partition array for this (and the T(n,k)) problem. See A258152. - Wolfdieter Lang, Jun 17 2015

Examples

			The number of ways of arranging eight pawns on a standard chessboard such that two rows contain at least one pawn is T(8,2)=360304.
Triangle T(n,k) begins:
n\k 1      2        3       4        5       6 ...
1:  1
2:  2      4
3:  3     54      27
4:  4    408    1152      256
5:  5   2500   22500    25000     3125
6:  6  13830  315900   988200   583200   46656
...
n = 7:  7  72030 3709545 25882780  40588905 14823774 823543,
n = 8:  8 360304 39024384 535754240 1766195200 1657012224 411041792 16777216.
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:= Binomial[n,k] * Sum[Multinomial@@ (Last/@ Tally[e]) * Times@@ Binomial[n,e], {e, IntegerPartitions[n, {k}]}]; Flatten@ Table[ T[n,k],{n,9}, {k,n}] (* Giovanni Resta, May 28 2015 *)

Formula

T(n,2) = binomial(n,2)*(binomial(2*n,n)-2). - Giovanni Resta, May 28 2015

A295773 a(n) = Sum_{k=0..n} binomial(k^2, k).

Original entry on oeis.org

1, 2, 8, 92, 1912, 55042, 2002834, 87903418, 4514068786, 265401903136, 17575711359576, 1294325676386112, 104913619501093500, 9281271920245432932, 889811788303594625412, 91895379599481072720852, 10170646981621794947354052, 1200909691326112843842751962
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 27 2017

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(k^2, k): k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jan 10 2019
  • Mathematica
    Table[Sum[Binomial[k^2, k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(k^2, k)); \\ Michel Marcus, Jan 10 2019
    

Formula

a(n) ~ exp(n - 1/2) * n^(n - 1/2) / sqrt(2*Pi).

A298689 G.f. A(x) satisfies: A(x) = Sum_{n>=0} binomial( n^2, n) * x^n / A(x)^( n^2 ).

Original entry on oeis.org

1, 1, 5, 56, 957, 22312, 666666, 24367474, 1051351629, 52144520972, 2915915251326, 181227240764128, 12382862552065170, 922234506009645794, 74345308066436693828, 6449466281781165675666, 599083515375854753327365, 59328642583049975996828036, 6240245388930730524658068558, 694754212357547941002786433000, 81628078642468462576697539116234
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2018

Keywords

Comments

Compare to: Sum_{n>=0} C(m*n,n) * x^n / (1+x)^(m*n) = (1+x)/(1 - (m-1)*x) holds for fixed m.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 56*x^3 + 957*x^4 + 22312*x^5 + 666666*x^6 + 24367474*x^7 + 1051351629*x^8 + 52144520972*x^9 + 2915915251326*x^10 + 181227240764128*x^11 + 12382862552065170*x^12 + ...
such that
A(x) = 1 + C(1,1)*x/A(x) + C(4,2)*x^2/A(x)^4 + C(9,3)*x^3/A(x)^9 + C(16,4)*x^4/A(x)^16 + C(25,5)*x^5/A(x)^25 + C(36,6)*x^6/A(x)^36 + C(49,7)*x^7/A(x)^49 + ...
more explicitly,
A(x) = 1 + x/A(x) + 6*x^2/A(x)^4 + 84*x^3/A(x)^9 + 1820*x^4/A(x)^16 + 53130*x^5/A(x)^25 + 1947792*x^6/A(x)^36 + 85900584*x^7/A(x)^49 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = Vec(sum(m=0,#A,binomial(m^2,m) * x^m/Ser(A)^(m^2) ))); A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

a(2^k) is odd for k>=0, and a(n) is even elsewhere except at n=0 (conjecture).

A298695 G.f.: Sum_{n>=0} binomial(n^2, n) * x^n / (1 + x)^(n^2).

Original entry on oeis.org

1, 1, 5, 61, 1123, 27671, 853411, 31603447, 1365807689, 67469763889, 3749935785301, 231591200859701, 15733654527061483, 1166102347943957815, 93629607937879486019, 8096167402408961507311, 750088483178476669111441, 74127049788588758257392161, 7783440821906363883725443813, 865349148215025766722403077229, 101553078711812924877087765912371
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2018

Keywords

Comments

Compare g.f. to: Sum_{n>=0} binomial(m*n, n) * x^n / (1+x)^(m*n) = (1+x)/(1 - (m-1)*x) holds for fixed m.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 61*x^3 + 1123*x^4 + 27671*x^5 + 853411*x^6 + 31603447*x^7 + 1365807689*x^8 + 67469763889*x^9 + 3749935785301*x^10 + ...
such that
A(x) = 1 + C(1,1)*x/(1+x) + C(4,2)*x^2/(1+x)^4 + C(9,3)*x^3/(1+x)^9 + C(16,4)*x^4/(1+x)^16 + C(25,5)*x^5/(1+x)^25 + C(36,6)*x^6/(1+x)^36 + ...
more explicitly,
A(x) = 1 + x/(1+x) + 6*x^2/(1+x)^4 + 84*x^3/(1+x)^9 + 1820*x^4/(1+x)^16 + 53130*x^5/(1+x)^25 + 1947792*x^6/(1+x)^36 + ... + A014062(n)*x^n/(1+x)^(n^2) + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 21; s = Sum[Binomial[n^2, n]*x^n/(1 + x)^(n^2), {n, 0, terms}] + O[x]^terms; CoefficientList[s, x] (* Jean-François Alcover, Feb 06 2018 *)
  • PARI
    {a(n) = my(A = sum(m=0,n,binomial(m^2,m)*x^m/(1+x +x*O(x^n))^(m^2) ) ); polcoeff(A,n)}
    for(n=0,25, print1(a(n),", "))

Formula

a(n) ~ c * d^n * (n-1)!, , where d = -4 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 6.176554609483480358231680164050876553672889794... and c = 0.127903391767990118250352331247574466909912463001514793015830303493876... - Vaclav Kotesovec, Oct 10 2020
c = exp(LambertW(-2*exp(-2))^2/8 - 1/2) / (2*Pi*sqrt(1 + LambertW(-2*exp(-2)))). - Vaclav Kotesovec, Mar 18 2022

A107446 a(n) = binomial(n^4, n).

Original entry on oeis.org

1, 1, 120, 85320, 174792640, 782083984500, 6505247592703944, 90471680541391718800, 1951589337580920650595840, 61742372998425082372103866380, 2743355077591282538231819720749000, 165382891003629711761140477728569323368, 13151651360462180865959048190677701749268800
Offset: 0

Views

Author

Zak Seidov, May 26 2005

Keywords

Crossrefs

Cf. A014062 (binomial(n^2, n)).

Programs

  • Mathematica
    Table[Binomial[n^4, n], {n, 10}]
  • PARI
    a(n) = {binomial(n^4, n)} \\ Andrew Howroyd, Feb 03 2020

Formula

a(n) ~ e^n*n^(3n - 1/2)/sqrt(2*Pi). - Harlan J. Brothers, Aug 05 2023

Extensions

a(0)=1 prepended and terms a(11) and beyond from Andrew Howroyd, Feb 03 2020

A109901 a(n) = binomial(n^2, n*(n+1)/2).

Original entry on oeis.org

1, 1, 4, 84, 8008, 3268760, 5567902560, 39049918716424, 1118770292985239888, 130276394656770614583240, 61448471214136179596720592960, 117118180539414377821494470432491764, 900390992257782351906806257139068209113040, 27883369051325994219981405855549095749234579210080
Offset: 0

Views

Author

Amarnath Murthy, Jul 14 2005

Keywords

Comments

8*a(2*n+1)^4 = A182010(n) = number of potential group developed cocyclic Hadamard matrices over (the group) Z_{(2*n+1)^2} X Z^2_2 [Baliga, et al., p. 130]. - L. Edson Jeffery, Apr 10 2012

Examples

			a(6) = 36!/(21!*15!) = 5567902560.
		

Crossrefs

Cf. variants: A014062 (C(n^2,n*(n-1))), A135757 (C(n*(n+1),n*(n+1)/2)).
Cf. A182010.

Programs

  • Maple
    seq(binomial(n^2,n*(n+1)/2),n=0..12); # Emeric Deutsch, Jul 16 2005
  • Mathematica
    Table[Binomial[n^2,(n(n+1))/2],{n,20}] (* Harvey P. Dale, Jun 04 2011 *)
  • PARI
    a(n)=binomial(n^2,n*(n+1)/2)

Formula

a(n) = C(n^2, n*(n+1)/2) = (n^2!)/((n(n+1)/2)!*(n(n-1)/2)!).
a(n) = C(n^2, n*(n-1)/2).

Extensions

More terms from Emeric Deutsch, Jul 16 2005
Offset changed to 0 (with a(0)=1), and name changed slightly by Paul D. Hanna, Jun 24 2011
Terms a(12) and beyond from Andrew Howroyd, Nov 09 2019

A371306 Least positive number k such that binomial(k^2,k) is divisible by n.

Original entry on oeis.org

1, 2, 2, 3, 4, 2, 3, 6, 8, 4, 5, 3, 4, 3, 5, 6, 6, 8, 8, 4, 3, 5, 5, 6, 9, 4, 16, 3, 8, 5, 6, 14, 5, 6, 4, 8, 9, 8, 9, 10, 13, 3, 7, 6, 9, 5, 7, 6, 10, 9, 6, 4, 13, 16, 5, 6, 8, 8, 8, 14, 8, 6, 12, 23, 4, 5, 12, 6, 5, 4, 12, 8, 9, 9, 9, 8, 5, 9, 9, 14, 16, 13, 13, 3, 14, 7, 8, 6, 19, 9, 4, 7, 6, 7, 9, 14, 10, 10, 9, 16
Offset: 1

Views

Author

Seiichi Manyama, Mar 23 2024

Keywords

Crossrefs

Cf. A014062.

Programs

  • PARI
    a(n) = my(k=1); while(binomial(k^2, k)%n>0, k++); k;
Previous Showing 21-30 of 46 results. Next