A048855 Number of integers up to n! relatively prime to n!.
1, 1, 1, 2, 8, 32, 192, 1152, 9216, 82944, 829440, 8294400, 99532800, 1194393600, 16721510400, 250822656000, 4013162496000, 64210599936000, 1155790798848000, 20804234379264000, 416084687585280000, 8737778439290880000, 192231125664399360000
Offset: 0
References
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley Publ. Co., Reading, MA, 1989, page 134.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..450
- Jean-Marie De Koninck and William Verreault, Arithmetic functions at factorial arguments, Publications de l'Institut Mathématique, Vol. 115, No. 129 (2024), pp. 45-76.
Programs
-
Maple
with(numtheory):a:=n->phi(n!): seq(a(n), n=0..20); # Zerinvary Lajos, Oct 07 2007
-
Mathematica
Table[ EulerPhi[ n! ], {n, 0, 21}] (* Robert G. Wilson v, Nov 21 2003 *)
-
PARI
a(n)=eulerphi(n!) \\ Charles R Greathouse IV, May 12 2011
-
Python
from math import factorial, prod from sympy import primerange from fractions import Fraction def A048855(n): return (factorial(n)*prod(Fraction(p-1,p) for p in primerange(n+1))).numerator # Chai Wah Wu, Jul 06 2022
-
Sage
[euler_phi(factorial(n)) for n in range(0,21)] # Zerinvary Lajos, Jun 06 2009
Formula
a(n) = phi(n!) = A000010(n!).
If n is composite, then a(n) = a(n-1)*n. If n is prime, then a(n) = a(n-1)*(n-1). - Leroy Quet, May 24 2007
Under the Riemann Hypothesis, a(n) = n! / (e^gamma * log n) * (1 + O(log n/sqrt(n))). - Charles R Greathouse IV, May 12 2011
Sum_{k=1..n} a(k) = exp(-gamma) * (n!/log(n)) * (1 + O(1/log(n)^3)), where gamma is Euler's constant (A001620) (De Koninck and Verreault, 2024, p. 56, eq. (4.12)). - Amiram Eldar, Dec 10 2024
Extensions
Name changed by Daniel Forgues, Aug 01 2011
Comments