cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 50 results. Next

A059173 Maximal number of regions into which 4-space can be divided by n hyperspheres.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 62, 114, 198, 326, 512, 772, 1124, 1588, 2186, 2942, 3882, 5034, 6428, 8096, 10072, 12392, 15094, 18218, 21806, 25902, 30552, 35804, 41708, 48316, 55682, 63862, 72914, 82898, 93876, 105912, 119072, 133424, 149038
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

n hyperspheres divide R^k into at most C(n-1, k) + Sum_{i=0..k} C(n, i) regions.
From Raphie Frank Nov 24 2012: (Start)
Define the gross polygonal sum, GPS(n), of an n-gon as the maximal number of combined points (p), intersections (i), connections (c = edges (e) + diagonals (d)) and areas (a) of a fully connected n-gon, plus the area outside the n-gon. The gross polygonal sum (p + i + c + a + 1) is equal to this sequence and, for all n > 0, then individual components of this sum can be calculated from the first 5 entries in row (n-1) of Pascal's triangle.
For example, the gross polygonal sum of a 7-gon (the heptagon):
Let row 6 of Pascal's triangle = {1, 6, 15, 20, 15, 6, 1} = A B C D E F G.
Points = 1 + 6 = A + B = 7 [A000027(n)].
Intersections = 20 + 15 = D + E = 35 [A000332(n+2)].
Connections = 6 + 15 = B + C = 21 [A000217(n)].
Areas inside = 15 + 20 + 15 = C + D + E = 50 [A006522(n+1)].
Areas outside = 1 = A = 1 [A000012(n)].
Then, GPS(7) = 7 + 35 + 21 + 50 + 1 = 2(A + B + C + D + E) = 114 = a(7). In general, a(n) = GPS(n). (End)

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
A row of A059250.

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},2^Range[0,5],50] (* Paolo Xausa, Dec 29 2023 *)

Formula

a(0) = 1; a(n) = 2 * A000127(n), for n >= 1.
G.f.: -(x^5 + x^4 - 2*x^3 + 4*x^2 - 3*x + 1)/(x-1)^5. - Colin Barker, Oct 06 2012
E.g.f.: exp(x)*(2 + x^2 + x^4/12) - 1. - Stefano Spezia, May 19 2024

A059174 Maximal number of regions into which 5-space can be divided by n hyperspheres.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 126, 240, 438, 764, 1276, 2048, 3172, 4760, 6946, 9888, 13770, 18804, 25232, 33328, 43400, 55792, 70886, 89104, 110910, 136812, 167364, 203168, 244876, 293192, 348874, 412736, 485650, 568548, 662424, 768336, 887408, 1020832, 1169870
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

n hyperspheres divide R^k into at most binomial(n-1, k) + Sum_{i=0..k} binomial(n, i) regions.

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), this sequence (dim 5).
Fifth row (k=5) of A059250.
Cf. A006261.

Programs

  • GAP
    Concatenation([1], List([1..40], n-> Binomial(n-1,5) + Sum([0..5], i-> Binomial(n,i)))); # Muniru A Asiru, Dec 18 2018
    
  • Magma
    [1] cat [(n^5-5*n^4+25*n^3+5*n^2+94*n+120)/60: n in [0..40]]; // Vincenzo Librandi, Dec 21 2018
  • Maple
    seq(coeff(series((x^6+3*x^4-6*x^3+7*x^2-4*x+1)/(1-x)^6,x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Dec 18 2018
  • Mathematica
    Join[{1}, Table[((n^5 - 5 n^4 + 25 n^3 + 5 n^2 + 94 n + 120) / 60), {n, 0, 50}]] (* Vincenzo Librandi, Dec 21 2018 *)
  • PARI
    a(n) = binomial(n-1, 5) + sum(i=0, 5, binomial(n, i)); \\ Michel Marcus, Jan 29 2016
    

Formula

a(n) = binomial(n-1, 5) + Sum_{i=0..5} binomial(n, i).
G.f.: (x^6 + 3*x^4 - 6*x^3 + 7*x^2 - 4*x + 1)/(x - 1)^6. - Colin Barker, Oct 06 2012
a(n) = 2*A006261(n-1), for n > 0. - Günter Rote, Dec 18 2018, by elementary manipulations.
E.g.f.: 1 + (1/60)*(120*x + 20*x^3 + x^5)*exp(x). - Franck Maminirina Ramaharo, Dec 21 2018

A241269 Denominator of c(n) = (n^2+n+2)/((n+1)*(n+2)*(n+3)).

Original entry on oeis.org

3, 6, 15, 60, 105, 21, 126, 360, 495, 330, 429, 1092, 1365, 420, 1020, 2448, 2907, 1710, 1995, 4620, 5313, 759, 3450, 7800, 8775, 4914, 5481, 12180, 13485, 3720, 8184, 17952, 19635, 10710, 11655, 25308, 27417, 3705, 15990, 34440, 37023, 19866, 21285, 45540
Offset: 0

Views

Author

Paul Curtz, Apr 18 2014

Keywords

Comments

All terms are multiples of 3.
Difference table of c(n):
1/3, 1/6, 2/15, 7/60, 2/21,...
-1/6, -1/30, -1/60, -1/84, -1/105,...
2/15, 1/60, 1/210, 1/420, 1/630,...
-7/60, -1/84, -1/420, -1/1260, -1/2520,... .
This is an autosequence of the second kind; the inverse binomial transform is the signed sequence. The main diagonal is the first upper diagonal multiplied by 2.
Denominators of the main diagonal: A051133(n+1).
Denominators of the first upper diagonal; A000911(n).
c(n) is a companion to A026741(n)/A045896(n).
Based on the Akiyama-Tanigawa transform applied to 1/(n+1) which yields the Bernoulli numbers A164555(n)/A027642(n).
Are the numerators of the main diagonal (-1)^n? If yes, what is the value of 1/3 - 1/30 + 1/210,... or 1 - 1/10 + 1/70 - 1/420, ... , from A002802(n)?
Is a(n+40) - a(n) divisible by 10?
No: a(5) = 21 but a(45) = 12972. # Robert Israel, Jul 17 2023
Are the common divisors to A014206(n) and A007531(n+3) of period 16: repeat 2, 4, 4, 2, 2, 16, 4, 2, 2, 4, 4, 2, 2, 8, 4, 2?
Reduce c(n) = f(n) = b(n)/a(n) = 1/3, 1/6, 2/15, 7/60, 11/105, 2/21, 11/126, 29/360, ... .
Consider the successively interleaved autosequences (also called eigensequences) of the second kind and of the first kind
1, 1/2, 1/3, 1/4, 1/5, 1/6, ...
0, 1/6, 1/6, 3/20, 2/15, 5/42, ...
1/3, 1/6, 2/15, 7/60, 11/105, 2/21, ...
0, 1/10, 1/10, 13/140, 3/35, 5/63, ...
1/5, 1/10, 3/35, 11/140, 23/315, 43/630, ...
0, 1/14, 1/14, 17/252, 4/63, ...
This array is Au1(m,n). Au1(0,0)=1, Au1(0,1)=1/2.
Au1(m+1,n) = 2*Au1(m,n+1) - Au1(m,n).
First row: see A003506, Leibniz's Harmonic Triangle.
Second row: A026741/A045896.
a(n) is the denominator of the third row f(n).
The first column is 1, 0, 1/3, 0, 1/5, 0, 1/7, 0, ... . Numerators: A093178(n+1). This incites, considering tan(1), to introduce before the first row
Ta0(n) = 0, 1/2, 1/2, 5/12, 1/3, 4/15, 13/60, 151/840, ... .

Programs

  • Maple
    seq(denom((n^2+n+2)/((n+1)*(n+2)*(n+3))),n=0..1000);
  • Mathematica
    Denominator[Table[(n^2+n+2)/Times@@(n+{1,2,3}),{n,0,50}]] (* Harvey P. Dale, Mar 27 2015 *)
  • PARI
    for(n=0, 100, print1(denominator((n^2+n+2)/((n+1)*(n+2)*(n+3))), ", ")) \\ Colin Barker, Apr 18 2014

Formula

c(n) = A014206(n)/A007531(n+3).
The sum of the difference table main diagonal is 1/3 - 1/30 + 1/210 - ... = 10*A086466-4 = 4*(sqrt(5)*log(phi)-1) = 0.3040894... - Jean-François Alcover, Apr 22 2014
a(n) = (n+1)*(n+2)*(n+3)/gcd(4*n - 4, n^2 + n + 2), where gcd(4*n - 4, n^2 + n + 2) is periodic with period 16. - Robert Israel, Jul 17 2023

Extensions

More terms from Colin Barker, Apr 18 2014

A059250 Square array read by antidiagonals: T(k,n) = binomial(n-1, k) + Sum_{i=0..k} binomial(n, i), k >= 1, n >= 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 4, 6, 1, 2, 4, 8, 8, 1, 2, 4, 8, 14, 10, 1, 2, 4, 8, 16, 22, 12, 1, 2, 4, 8, 16, 30, 32, 14, 1, 2, 4, 8, 16, 32, 52, 44, 16, 1, 2, 4, 8, 16, 32, 62, 84, 58, 18, 1, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 1, 2, 4, 8, 16, 32, 64, 126, 198, 186, 92, 22, 1, 2, 4, 8, 16, 32, 64
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

T(k,n) = maximal number of regions into which k-space can be divided by n hyperspheres (k >= 1, n >= 0).
For all fixed k, the sequences T(k,n) are complete. - Frank M Jackson, Jan 26 2012
T(k-1,n) is also the number of regions created by n generic hyperplanes through the origin in k-space (k >= 2). - Kent E. Morrison, Nov 11 2017

Examples

			Array begins
  1, 2, 4, 6,  8, 10, 12, ...
  1, 2, 4, 8, 14, 22, ...
  1, 2, 4, 8, 16, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
Apart from border, same as A059214. If the k=0 row is included, same as A178522.

Programs

  • Mathematica
    getvalue[n_, k_] := If[n==0, 1, Binomial[n-1, k]+Sum[Binomial[n, i],{i, 0,k}]]; lexicographicLattice[{dim_, maxHeight_}] := Flatten[Array[Sort@Flatten[(Permutations[#1] &) /@     IntegerPartitions[#1 + dim - 1, {dim}], 1] &, maxHeight], 1]; pairs=lexicographicLattice[{2, 13}]-1; Table[getvalue[First[pairs[[j]]], Last[pairs[[j]]]+1], {j, 1, Length[pairs]}] (* Frank M Jackson, Mar 16 2013 *)

Formula

T(k,n) = 2 * Sum_{i=0..k-1} binomial(n-1, i), k >= 1, n >= 1. - Kent E. Morrison, Nov 11 2017

Extensions

Corrected and edited by N. J. A. Sloane, Aug 31 2011, following a suggestion from Frank M Jackson

A011826 f-vectors for simplicial complexes of dimension at most 1 (graphs) on at most n-1 vertices.

Original entry on oeis.org

2, 3, 5, 9, 16, 27, 43, 65, 94, 131, 177, 233, 300, 379, 471, 577, 698, 835, 989, 1161, 1352, 1563, 1795, 2049, 2326, 2627, 2953, 3305, 3684, 4091, 4527, 4993, 5490, 6019, 6581, 7177, 7808, 8475, 9179, 9921, 10702, 11523, 12385, 13289
Offset: 1

Views

Author

Svante Linusson (linusson(AT)math.kth.se)

Keywords

Crossrefs

Programs

Formula

a(n) = (n^3 - 3n^2 + 8n + 6)/6 fits all listed terms. - John W. Layman, Mar 13 1999
Empirical G.f.: -x*(x^3 - 5*x^2 + 5*x - 2) / (x - 1)^4. - Colin Barker, Sep 19 2012

A127410 Negative value of coefficient of x^(n-5) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

1875, 25920, 184877, 917504, 3582306, 11760000, 33820710, 87588864, 208295373, 461452992, 962836875, 1908408320, 3617795636, 6595852032, 11617856508, 19845120000, 32979115575, 53463778368, 84747328281, 131616866304, 200621093750, 300598812800, 443333396610
Offset: 5

Views

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-5) exists only for n>4, so the sequence starts with a(5). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>4) is multiplied by -1.

Examples

			The circulant matrix for n = 5 is
[1 2 3 4 5]
[5 1 2 3 4]
[4 5 1 2 3]
[3 4 5 1 2]
[2 3 4 5 1]
The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-5) is -1875, hence a(5) = 1875.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127407, A127408, A127409, A127411, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-5) : n in [5..24] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Magma
    [ (n-4)*(n-3)*(n-2)*(n-1)*n^5*(4*n+16) / (2*Factorial(6)) : n in [5..24] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Octave
    n * (n+1) * (n+2) * (n+3) * (n+4)^5 * (4*n + 32) / (2 * factorial(6)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoef(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-5)} \\ Klaus Brockhaus, Jan 27 2007
    
  • PARI
    a(n) = {(4*n^10-24*n^9-20*n^8+360*n^7-704*n^6+384*n^5)/(2*6!)} \\ Klaus Brockhaus, Jan 27 2007

Formula

a(n+4) = n*(n+1)*(n+2)*(n+3)*(n+4)^5*(4*n+32)/(2*6!) for n>=1.
a(n) = (4*n^10-24*n^9-20*n^8+360*n^7-704*n^6+384*n^5)/(2*6!) for n>=5.
G.f.: x^5*(x^5+53*x^4-82*x^3-2882*x^2-5295*x-1875)/(x-1)^11. [Colin Barker, May 29 2012]

Extensions

Edited by Klaus Brockhaus, Jan 27 2007

A127411 Negative value of coefficient of x^(n-6) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

27216, 453789, 3866624, 22674816, 103500000, 393286542, 1297410048, 3822832728, 10267329072, 25518796875, 59378761728, 130535973152, 273106821312, 547049504268, 1054272000000, 1962916959024, 3543150344976, 6218839661001, 10640820731904, 17789062500000
Offset: 6

Views

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-6) exists only for n>5, so the sequence starts with a(6). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>5) is multiplied by -1.

Examples

			The circulant matrix for n = 6 is
[1 2 3 4 5 6]
[6 1 2 3 4 5]
[5 6 1 2 3 4]
[4 5 6 1 2 3]
[3 4 5 6 1 2]
[2 3 4 5 6 1]
The characteristic polynomial of this matrix is x^6 - 6*x^5 -196*x^4 - 1980*x^3 - 10044*x^2 - 25920*x - 27216. The coefficient of x^(n-6) is -27216, hence a(6) = 27216.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127407, A127408, A127409, A127410, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-6) : n in [6..22] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Magma
    [ (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*n^6*(5*n+19) / (2*Factorial(7)) : n in [6..22] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Octave
    n * (n+1) * (n+2) * (n+3) * (n+4) * (n+5)^6 * (5*n + 44) / (2*factorial(7)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoef(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-6)} \\ Klaus Brockhaus, Jan 27 2007
    
  • PARI
    a(n) = {(5*n^12-56*n^11+140*n^10+490*n^9-2905*n^8+4606*n^7-2280*n^6)/(2*7!)} \\ Klaus Brockhaus, Jan 27 2007

Formula

a(n+5) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)^6*(5*n+44)/(2*7!) for n>=1.
a(n) = (5*n^12 - 56*n^11 + 140*n^10 + 490*n^9 - 2905*n^8 + 4606*n^7 - 2280*n^6)/(2*7!) for n>=6.
G.f.: x^6*(x^6 + 131*x^5 + 150*x^4 - 20470*x^3 - 90215*x^2 - 99981*x - 27216)/(x-1)^13. - Colin Barker, May 29 2012

Extensions

Edited by Klaus Brockhaus, Jan 27 2007

A347570 Table read by antidiagonals upward: the n-th row gives the lexicographically earliest infinite B_n sequence.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 4, 4, 1, 2, 5, 8, 5, 1, 2, 6, 14, 13, 6, 1, 2, 7, 22, 33, 21, 7, 1, 2, 8, 32, 56, 72, 31, 8, 1, 2, 9, 44, 109, 154, 125, 45, 9, 1, 2, 10, 58, 155, 367, 369, 219, 66, 10, 1, 2, 11, 74, 257, 669, 927, 857, 376, 81, 11
Offset: 1

Views

Author

Peter Kagey, Sep 06 2021

Keywords

Comments

A B_n sequence is a sequence such that all sums a(x_1) + a(x_2) + ... + a(x_n) are distinct for 1 <= x_1 <= x_2 <= ... <= x_n.

Examples

			Table begins:
n\k | 1  2   3   4    5     6     7      8
----+------------------------------------------
  1 | 1, 2,  3,  4,   5,    6,    7,     8, ...
  2 | 1, 2,  4,  8,  13,   21,   31,    45, ...
  3 | 1, 2,  5, 14,  33,   72,  125,   219, ...
  4 | 1, 2,  6, 22,  56,  154,  369,   857, ...
  5 | 1, 2,  7, 32, 109,  367,  927,  2287, ...
  6 | 1, 2,  8, 44, 155,  669, 2215,  6877, ...
  7 | 1, 2,  9, 58, 257, 1154, 4182, 14181, ...
  8 | 1, 2, 10, 74, 334, 1823, 8044, 28297, ...
		

Crossrefs

Cf. A000027 (n=1), A005282 (n=2), A096772 (n=3), A014206 (k=4), A370754 (k=5).

Programs

  • Python
    from itertools import count, islice, combinations_with_replacement
    def A347570_gen(): # generator of terms
        asets, alists, klist = [set()], [[]], [1]
        while True:
            for i in range(len(klist)-1,-1,-1):
                kstart, alist, aset = klist[i], alists[i], asets[i]
                for k in count(kstart):
                    bset = set()
                    for d in combinations_with_replacement(alist+[k],i):
                        if (m:=sum(d)+k) in aset:
                            break
                        bset.add(m)
                    else:
                        yield k
                        alists[i].append(k)
                        klist[i] = k+1
                        asets[i].update(bset)
                        break
            klist.append(1)
            asets.append(set())
            alists.append([])
    A347570_list = list(islice(A347570_gen(),30)) # Chai Wah Wu, Sep 06 2023

A027713 Palindromes of form k^2 + k + 2.

Original entry on oeis.org

2, 4, 8, 22, 44, 212, 242, 464, 2552, 8558, 40604, 41414, 85558, 229922, 805508, 2029202, 2342432, 2737372, 4006004, 4437344, 4767674, 281585182, 400060004, 440727044, 805282508, 8059999508, 40000600004, 47997579974, 251476674152, 2626540456262, 2728292928272
Offset: 1

Views

Author

Keywords

Comments

Palindromes h such that 4*h - 7 is a square. - Bruno Berselli, Aug 29 2018

Crossrefs

Programs

  • Magma
    [m: n in [0..10^7] | Intseq(m) eq Reverse(Intseq(m)) where m is n^2+n+2]; // Vincenzo Librandi, Mar 27 2011
  • Mathematica
    palQ[n_] := Module[{idn = IntegerDigits[n]}, idn == Reverse[idn]]; Select[Table[n^2 + n + 2, {n, 0, 502000}], palQ] (* Harvey P. Dale, Sep 15 2011 *)

Extensions

More terms from Giovanni Resta, Aug 28 2018

A127407 Negative value of coefficient of x^(n-2) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

3, 15, 44, 100, 195, 343, 560, 864, 1275, 1815, 2508, 3380, 4459, 5775, 7360, 9248, 11475, 14079, 17100, 20580, 24563, 29095, 34224, 40000, 46475, 53703, 61740, 70644, 80475, 91295, 103168, 116160, 130339, 145775, 162540, 180708, 200355
Offset: 2

Views

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-2) exists only for n>1, so the sequence starts with a(2). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>1) is multiplied by -1.

Examples

			The circulant matrix for n = 5 is
[1 2 3 4 5]
[5 1 2 3 4]
[4 5 1 2 3]
[3 4 5 1 2]
[2 3 4 5 1]
The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-2) is -100, hence a(5) = 100.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127408, A127409, A127410, A127411, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-2) : n in [2..38] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Magma
    [ (n-1) * n^2 * (n+7) / (2 * Factorial(3)) : n in [2..38] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Octave
    n * (n+1)^2 * (n+8) / (2 * factorial(3)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoeff(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-2)} \\ Klaus Brockhaus, Jan 27 2007
    
  • PARI
    a(n) = {(n^4+6*n^3-7*n^2)/(2*3!)} \\ Klaus Brockhaus, Jan 27 2007

Formula

a(n+1) = n*(n+1)^2*(n+8)/(2*3!) for n>=1.
a(n) = ((n-1)^4+10*(n-1)^3+17*(n-1)^2+8*(n-1))/(2*3!) for n>=2.
a(n) = (n^2*(-7+6*n+n^2))/12. G.f.: x^2*(3-x^2)/(1-x)^5. - Colin Barker, May 13 2012

Extensions

Edited by Klaus Brockhaus, Jan 27 2007
Previous Showing 11-20 of 50 results. Next