A386480
a(0) = 1; thereafter a(n) = n^2 - n + 2.
Original entry on oeis.org
1, 2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, 158, 184, 212, 242, 274, 308, 344, 382, 422, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192, 1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1982, 2072, 2164, 2258, 2354, 2452, 2552, 2654, 2758, 2864, 2972, 3082, 3194, 3308, 3424, 3542, 3662, 3784
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 3.
See
A014206 for further information (including additional references).
A181407
a(n) = (n-4)*(n-3)*2^(n-2).
Original entry on oeis.org
3, 3, 2, 0, 0, 16, 96, 384, 1280, 3840, 10752, 28672, 73728, 184320, 450560, 1081344, 2555904, 5963776, 13762560, 31457280, 71303168, 160432128, 358612992, 796917760, 1761607680, 3875536896, 8489271296, 18522046464, 40265318400, 87241523200, 188441690112
Offset: 0
-
List([0..40], n-> (n-4)*(n-3)*2^(n-2)); # G. C. Greubel, Feb 21 2019
-
[(n-4)*(n-3)*2^(n-2): n in [0..40] ]; // Vincenzo Librandi, Feb 01 2011
-
Table[(n-4)*(n-3)*2^(n-2), {n,0,40}] (* G. C. Greubel, Feb 21 2019 *)
-
vector(40, n, n--; (n-4)*(n-3)*2^(n-2)) \\ G. C. Greubel, Feb 21 2019
-
[(n-4)*(n-3)*2^(n-2) for n in (0..40)] # G. C. Greubel, Feb 21 2019
A200182
Number of -n..n arrays x(0..3) of 4 elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).
Original entry on oeis.org
3, 6, 11, 14, 19, 26, 31, 38, 47, 54, 63, 74, 83, 94, 107, 118, 131, 146, 159, 174, 191, 206, 223, 242, 259, 278, 299, 318, 339, 362, 383, 406, 431, 454, 479, 506, 531, 558, 587, 614, 643, 674, 703, 734, 767, 798, 831, 866, 899, 934, 971, 1006, 1043, 1082, 1119, 1158
Offset: 1
Some solutions for n=6:
..3....4....2....6....5....2....0....6....1....0....0....5....6....1....4....3
.-2....0....1...-2....6....3...-1...-1....2....1....1....0...-3....0...-1....1
.-1....1....2...-1...-6...-3....0....0....3....2...-1....1...-2....1....0....2
..0...-5...-5...-3...-5...-2....1...-5...-6...-3....0...-6...-1...-2...-3...-6
A213671
The odd part of n^2 - n + 2.
Original entry on oeis.org
1, 1, 1, 7, 11, 1, 11, 29, 37, 23, 7, 67, 79, 23, 53, 121, 137, 77, 43, 191, 211, 29, 127, 277, 301, 163, 11, 379, 407, 109, 233, 497, 529, 281, 149, 631, 667, 11, 371, 781, 821, 431, 113, 947, 991, 259, 541, 1129, 1177, 613, 319, 1327, 1379, 179
Offset: 1
A213921
Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places clockwise. Table T(n,k) read by antidiagonals.
Original entry on oeis.org
1, 2, 3, 5, 4, 7, 10, 8, 9, 13, 17, 14, 6, 16, 21, 26, 22, 11, 12, 25, 31, 37, 32, 18, 15, 20, 36, 43, 50, 44, 27, 23, 24, 30, 49, 57, 65, 58, 38, 33, 19, 35, 42, 64, 73, 82, 74, 51, 45, 28, 29, 48, 56, 81, 91, 101, 92, 66, 59, 39, 34, 41, 63, 72, 100, 111
Offset: 1
The start of the sequence as table:
1 2 5 10 17 26 ...
3 4 8 14 22 32 ...
7 9 6 11 18 27 ...
13 16 12 15 23 33 ...
21 25 20 24 19 28 ...
31 36 30 35 29 34 ...
...
The start of the sequence as triangle array read by rows:
1;
2, 3;
5, 4, 7;
10, 8, 9, 13;
17, 14, 6, 16, 21;
26, 22, 11, 12, 25, 31;
...
Cf.
A060734,
A060736; table T(n,k) contains: in rows
A002522,
A014206,
A059100,
A027688,
A117950,
A027689,
A087475,
A027690,
A117951,
A027691,
A114949,
A027692,
A117619; in columns
A002061,
A000290,
A002378,
A005563,
A028387,
A008865,
A028552,
A028872,
A014209,
A028347,
A028875.
A318274
Triangle read by rows: T(n,k) = n for 0 < k < n and T(n,0) = T(n,n) = 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 4, 1, 1, 5, 5, 5, 5, 1, 1, 6, 6, 6, 6, 6, 1, 1, 7, 7, 7, 7, 7, 7, 1, 1, 8, 8, 8, 8, 8, 8, 8, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 1, 12
Offset: 0
Triangle begins:
n\k| 0 1 2 3 4 5 6 7 8
---+--------------------------
0 | 1
1 | 1 1
2 | 1 2 1
3 | 1 3 3 1
4 | 1 4 4 4 1
5 | 1 5 5 5 5 1
6 | 1 6 6 6 6 6 1
7 | 1 7 7 7 7 7 7 1
8 | 1 8 8 8 8 8 8 8 1
...
For n = 5, the binary bitonic words are
(k = 0) 00000;
(k = 1) 10000, 01000, 00100, 00010, 00001;
(k = 2) 11000, 01100, 00110, 00011, 10001;
(k = 3) 11100, 01110, 00111, 10011, 11001;
(k = 4) 11110, 01111, 10111, 11011, 11101;
(k = 5) 11111.
- N. Alon, H. Last, R. Pinchasi and M. Sharir, On the complexity of arrangements of circles in the plane, Discrete Comput. Geom. Vol. 26 (2001), 465-492.
- K. E. Batcher, Sorting networks and their applications, Proceed. AFIPS Spring Joint Comput. Conf. 32 (1968), 307-314.
- W. Denton, Intersecting circles.
- D. Kinsela, Plane division by Lines AND Circles (Problem, Analysis and Solution).
- H. W. Lang, Bitonic sequences.
- F. Ramaharo, Enumerating the states of the twist knot, arXiv:1712.06543 [math.CO], 2017.
- Franck Maminirina Ramaharo, Illustration of initial terms
- P. Rosin, Rosettes and other arrangements of circles, Nexus Network Journal Vol. 3 (2001), 113-126.
- Eric Weisstein's World of Mathematics, Plane Division by Circles.
-
Table[If[k == n || k == 0, 1, n], {n, 0, 20}, {k, 0, n}] // Flatten
-
T(n, k) := if k = 0 or k = n then 1 else if k < n then n else 0$
for n:0 thru 10 do print(makelist(T(n, k), k, 0, n));
-
T(n,k) = if ((k==0) || (k==n), 1, n);
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 25 2018
-
from math import isqrt
def A318274(n): return 1 if 0<=(k:=n+1<<1)-(r:=(m:=isqrt(k))*(m+1))<=2 else m-(k<=r) # Chai Wah Wu, Nov 09 2024
A171746
Let f(n) = n + floor(sqrt(n)). Then a(n) is the smallest number of iterations of f on n such that a perfect square is obtained.
Original entry on oeis.org
3, 2, 1, 5, 2, 4, 1, 3, 7, 2, 4, 6, 1, 3, 5, 9, 2, 4, 6, 8, 1, 3, 5, 7, 11, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 13, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 15, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 17, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 19, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 3, 5
Offset: 1
Neven Juric (neven.juric(AT)apis-it.hr), Oct 07 2010
f(9)=12, f(12)=15, f(15)=18, f(18)=22, f(22)=26, f(26)=31, f(31)=36. The first square number in this sequence 12,15,18,22,26,31,36 is on the seventh place and therefore a(9)=7.
- Matematicko-fizicki list 1/144, problem 2-2, page 29, (1985-1986).
-
a171746 = (+ 1) . length . takeWhile (== 0) .
map a010052 . tail . iterate a028392
-- Reinhard Zumkeller, Feb 23 2012, Oct 14 2010
-
f[n_] := Length@ NestWhileList[ # + Floor@Sqrt@# &, n, ! IntegerQ@Sqrt@# || # == n &] - 1; Array[f, 93] (* Robert G. Wilson v, Oct 08 2010 *)
-
f(n) = n + sqrtint(n); \\ A028392
a(n) = my(k=1); while (!issquare(n=f(n)), k++); k; \\ Michel Marcus, Nov 06 2022
A234305
Irregular triangle read by rows. Theoretical distribution of electrons based on the Janet's sequence A167268.
Original entry on oeis.org
1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 5, 2, 2, 6, 2, 2, 6, 1, 2, 2, 6, 2, 2, 2, 6, 2, 1, 2, 2, 6, 2, 2, 2, 2, 6, 2, 3, 2, 2, 6, 2, 4, 2, 2, 6, 2, 5, 2, 2, 6, 2, 6, 2, 2, 6, 2, 6, 1, 2, 2, 6, 2, 6, 2, 2, 2, 6, 2, 6, 2, 1, 2, 2, 6, 2, 6, 2, 2, 2, 2, 6, 2, 6, 2, 3, 2, 2, 6, 2, 6, 2, 4
Offset: 1
1, H
2, He
2, 1, Li
2, 2, Be
2, 2, 1,
2, 2, 2,
2, 2, 3,
2, 2, 4,
2, 2, 5,
2, 2, 6,
2, 2, 6, 1,
2, 2, 6, 2,
2, 2, 6, 2, 1,
2, 2, 6, 2, 2,
2, 2, 6, 2, 3,
2, 2, 6, 2, 4,
2, 2, 6, 2, 5,
2, 2, 6, 2, 6,
2, 2, 6, 2, 6, 1,
2, 2, 6, 2, 6, 2,
2, 2, 6, 2, 6, 2, 1,
2, 2, 6, 2, 6, 2, 2,
2, 2, 6, 2, 6, 2, 3, etc.
A288487
Cuboids that fit in square rings from A288486 obtaining a fifth power.
Original entry on oeis.org
1, 8, 75, 400, 1445, 4056, 9583, 20000, 38025, 67240, 112211, 178608, 273325, 404600, 582135, 817216, 1122833, 1513800, 2006875, 2620880, 3376821, 4298008, 5410175, 6741600, 8323225, 10188776, 12374883, 14921200, 17870525, 21268920, 25165831, 29614208
Offset: 0
-
Table[(1 + n)*(1 + n^2)^2, {n, 0, 28}] (* or *) CoefficientList[Series[(1 + 2 x + 42 x^2 + 50 x^3 + 25 x^4)/(1 - x)^6, {x, 0, 28}], x] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 8, 75, 400, 1445, 4056}, 29]
-
Vec((1 + 2*x + 42*x^2 + 50*x^3 + 25*x^4)/(1 - x)^6 + O(x^28))
A342940
Triangle read by rows: T(n, k) is the Skolem number of the parallelogram graph P_{n, k}, with 1 < k <= n.
Original entry on oeis.org
2, 3, 4, 4, 6, 8, 5, 8, 11, 14, 6, 10, 14, 18, 22, 7, 12, 17, 22, 27, 32, 8, 14, 20, 26, 32, 38, 44, 9, 16, 23, 30, 37, 44, 51, 58, 10, 18, 26, 34, 42, 50, 58, 66, 74, 11, 20, 29, 38, 47, 56, 65, 74, 83, 92, 12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 13, 24, 35, 46, 57, 68, 79, 90, 101, 112, 123, 134
Offset: 2
The triangle T(n, k) begins:
n\k| 2 3 4 5 6 7
---+------------------------
2 | 2
3 | 3 4
4 | 4 6 8
5 | 5 8 11 14
6 | 6 10 14 18 22
7 | 7 12 17 22 27 32
...
For n > 1, 3*
A002061(n) gives the Skolem number of the hexagonal grid graph H_n.
-
T[n_,k_]:=k*n-2k-n+4; Table[T[n,k],{n,2,13},{k,2,n}]//Flatten
Comments