cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A099930 a(n) = Pell(n) * Pell(n-1) * Pell(n-2) / 10.

Original entry on oeis.org

1, 12, 174, 2436, 34307, 482664, 6791772, 95567064, 1344731653, 18921807828, 266250046986, 3746422451772, 52716164405255, 741772724044560, 10437534301224120, 146867252940711408, 2066579075472320521, 29078974309550454492, 409172219409185308518, 5757490046038128779316
Offset: 3

Views

Author

Ralf Stephan, Nov 03 2004

Keywords

Crossrefs

Cf. A000129. Third column of triangle A099927. Cf. A001656, A084175.

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^3/((1+2x-x^2)(1-14x-x^2)),{x,0,20}],x],3] (* or *) LinearRecurrence[{12,30,-12,-1},{1,12,174,2436},20] (* Harvey P. Dale, Feb 26 2012 *)

Formula

G.f.: x^3 / ((1+2*x-x^2)*(1-14*x-x^2)).
a(n) = 12*a(n-1) + 30*a(n-2) - 12*a(n-3) - a(n-4); a(3)=1, a(4)=12, a(5)=174, a(6)=2436. - Harvey P. Dale, Feb 26 2012
From Peter Bala, Mar 30 2015: (Start)
The following remarks assume an offset of 0.
The o.g.f. A(x) = 1/( (1 + 2*x - x^2)*(1 - 14*x - x^2) ). Hence A(x) (mod 4) = 1/(1 + 2*x - x^2)^2 (mod 4). It follows by Theorem 1 of Heninger et al. that sqrt(A(x)) = 1 + 6*x + 69*x^2 + 804*x^3 + ... has integral coefficients.
Sum_{n >= 0} a(n+3)*x^n = exp( Sum_{n >= 1} Pell(4*n)/Pell(n)*x^n/n ). Cf. A001656, A084175. (End)
a(n+1) = (1/2)*Sum_{k=1..n-1} ( A014445(k)*A110272(n-k) ) for n > 1. - Michael A. Allen, Jan 25 2023

A074723 Largest power of 2 dividing F(3n) where F(k) is the k-th Fibonacci number.

Original entry on oeis.org

2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 64, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 128, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 64, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 256, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2, 16, 2, 8, 2, 64, 2, 8, 2, 16, 2, 8, 2, 32, 2, 8, 2
Offset: 1

Views

Author

Benoit Cloitre, Sep 04 2002

Keywords

Comments

If m == 1 or 2 (mod 3) then F(m) is odd.

Crossrefs

Programs

  • Maple
    seq(`if`(n::odd,2,2^(2+padic:-ordp(n,2))),n=1..100); # Robert Israel, Oct 10 2016
  • Mathematica
    Table[2^(Length@ NestWhileList[#/2 &, Fibonacci[3 n], IntegerQ] - 2), {n, 120}] (* Michael De Vlieger, Oct 10 2016 *)
    a[n_] := If[EvenQ[n], 2^(FactorInteger[n][[1]][[2]] + 2), 2]; Array[a, 90] (* Frank M Jackson, Jul 28 2018 *)
  • PARI
    a(n) = 2^valuation(fibonacci(3*n), 2); \\ Michel Marcus, Oct 10 2016

Formula

It appears that 4 never appears and : a(2k+1)=2 a(2^m*(2k+1))=2^(m+2) for k>=0 and m >=1.
From Robert Israel, Oct 10 2016: (Start)
a(2k+1)=2 follows from F(n+6) = 5 F(n) + 8 F(n+1) == F(n) mod 4.
a(2*(2k+1))=8 follows from F(n+12) = 89 F(n) + 144 F(n+1) == 9 F(n) mod 16.
a(2^m*(2k+1)) = 2^(m+2) for m > 2 follows from F(2n) = F(n) (2 F(n-1) + F(n)).
G.f. 2*x/(1-x^2) + Sum_{m>=1} 2^(m+2)*x^(2^m)/(1 - x^(2^(m+1))). (End)
a(n) = A006519(A014445(n)). - Michel Marcus, Oct 10 2016
As proved above, for m > 0, a(2m-1) = 2 and a(2m) = 2^(k+2) where k is the exponent of the even prime in the prime factorization of 2m. Also a(n) = 2*A297402(n). - Frank M Jackson, Jul 28 2018
Sum_{k=1..n} a(k) ~ (2*n/log(2)) * (log(n) + gamma + log(2) - 1), where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2023

A087567 a(n) = (1/5)*Sum_{k=0..n} binomial(n,k)*Fibonacci(k)*5^k.

Original entry on oeis.org

1, 7, 68, 609, 5555, 50456, 458737, 4169823, 37904764, 344559985, 3132110411, 28471412592, 258809985953, 2352626740919, 21385776919540, 194400346514241, 1767132187070947, 16063531893267208, 146020234807218449, 1327348749622606095, 12065825708695393196
Offset: 0

Views

Author

Benoit Cloitre, Oct 25 2003

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,19},{1,7},25] (* Paolo Xausa, Jan 07 2024 *)
  • Sage
    [lucas_number1(n,7,-19) for n in range(1, 20)] # Zerinvary Lajos, Apr 29 2009

Formula

a(n) = 7*a(n-1) + 19*a(n-2).
G.f.: 1 / (-19*x^2-7*x+1). - Colin Barker, Aug 08 2013

Extensions

More terms from Colin Barker, Aug 08 2013

A107227 Numbers having no odd terms in their Zeckendorf representation.

Original entry on oeis.org

2, 8, 10, 34, 36, 42, 44, 144, 146, 152, 154, 178, 180, 186, 188, 610, 612, 618, 620, 644, 646, 652, 654, 754, 756, 762, 764, 788, 790, 796, 798, 2584, 2586, 2592, 2594, 2618, 2620, 2626, 2628, 2728, 2730, 2736, 2738, 2762, 2764, 2770, 2772, 3194, 3196, 3202
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2005

Keywords

Comments

A107016(a(n))=0, A107015(a(n))>0; subsequence of A107225.

Crossrefs

Programs

  • Haskell
    a107227 n = a107227_list !! (n-1)
    a107227_list = filter ((all even) . a035516_row) [1..]
    -- Reinhard Zumkeller, Mar 10 2013

A107228 Numbers having no even terms in their Zeckendorf representation.

Original entry on oeis.org

1, 3, 4, 5, 6, 13, 14, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 55, 56, 58, 59, 60, 61, 68, 69, 71, 72, 73, 74, 76, 77, 79, 80, 81, 82, 89, 90, 92, 93, 94, 95, 102, 103, 105, 106, 107, 108, 110, 111, 113, 114, 115, 116, 233, 234, 236, 237, 238, 239, 246, 247, 249, 250
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2005

Keywords

Comments

A107015(a(n))=0, A107016(a(n))>0; subsequence of A107224.

Crossrefs

Programs

  • Haskell
    a107228 n = a107228_list !! (n-1)
    a107228_list = filter ((all odd) . a035516_row) [1..]
    -- Reinhard Zumkeller, Mar 10 2013

A195614 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 2.

Original entry on oeis.org

8, 136, 2448, 43920, 788120, 14142232, 253772064, 4553754912, 81713816360, 1466294939560, 26311595095728, 472142416783536, 8472251907007928, 152028391909359160, 2728038802461456960, 48952670052396866112, 878420022140682133064
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    r = 2; z = 32;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195614, A195615 *)
    Sqrt[a^2 + b^2] (* A007805 *)
    (* Peter J. C. Moses, Sep 02 2011 *)
  • PARI
    Vec(8*x/((x+1)*(x^2-18*x+1)) + O(x^50)) \\ Colin Barker, Jun 04 2015

Formula

From Colin Barker, Jun 04 2015: (Start)
G.f.: 8*x / ((x+1)*(x^2-18*x+1)).
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3). (End)
a(n) = (-4*(-1)^n - (-2+sqrt(5))*(9+4*sqrt(5))^(-n) + (2+sqrt(5))*(9+4*sqrt(5))^n)/10. - Colin Barker, Mar 04 2016
a(n) = A014445(n) * A014445(n+1) / 2. - Diego Rattaggi, Jun 01 2020
a(n) is the numerator of continued fraction [4, ..., 4, 8, 4, ..., 4] with (n-1) 4's before and after the middle 8. - Greg Dresden and Hexuan Wang, Aug 30 2021

A199334 Triangle T(n,k) = Fibonacci(n+k), related to A000045 (Fibonacci numbers).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 2, 3, 5, 8, 3, 5, 8, 13, 21, 5, 8, 13, 21, 34, 55, 8, 13, 21, 34, 55, 89, 144, 13, 21, 34, 55, 89, 144, 233, 377, 21, 34, 55, 89, 144, 233, 377, 610, 987, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584
Offset: 0

Views

Author

Philippe Deléham, Nov 07 2011

Keywords

Examples

			Triangle begins :
   0;
   1,  1;
   1,  2,  3;
   2,  3,  5,  8;
   3,  5,  8, 13, 21;
   5,  8, 13, 21, 34,  55;
   8, 13, 21, 34, 55,  89, 144;
  13, 21, 34, 55, 89, 144, 233, 377;
  ...
		

Crossrefs

Row sums give A362067.

Formula

T(n,0) = Fibonacci(n) = A000045(n),
T(n,n) = Fibonacci(2n) = A001906(n),
T(2n,n) = Fibonacci(3n) = A014445(n).
T(n,k) = T(n,k-1) + T(n-1,k-1) = T(n-1,k-1) + T(n-1,k).

A014729 Squares of even Fibonacci numbers.

Original entry on oeis.org

0, 4, 64, 1156, 20736, 372100, 6677056, 119814916, 2149991424, 38580030724, 692290561600, 12422650078084, 222915410843904, 4000054745112196, 71778070001175616, 1288005205276048900, 23112315624967704576, 414733676044142633476, 7442093853169599697984
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A014445.

Programs

  • Magma
    [Fibonacci(3*n)^2: n in [0..20]]; // Vincenzo Librandi, Nov 19 2018
  • Mathematica
    (Table[Fibonacci@ n, {n, 0, 55}] /. n_ /; OddQ@ n -> Nothing)^2 (* or *)
    CoefficientList[Series[4 (-x^2 + x)/((1 + x) (1 - 18 x + x^2)), {x, 0, 18}], x] (* Michael De Vlieger, Mar 04 2016 *)
    LinearRecurrence[{17,17,-1},{0,4,64},20] (* Harvey P. Dale, Aug 02 2024 *)
  • MuPAD
    numlib::fibonacci(3*n)^2 $ n = 0..25; // Zerinvary Lajos, May 09 2008
    
  • PARI
    concat(0, Vec(4*x*(1-x)/((1+x)*(1-18*x+x^2)) + O(x^40))) \\ Colin Barker, Mar 04 2016
    
  • Sage
    [fibonacci(3*n)^2 for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
    

Formula

a(n) = (1/5)*(Fibonacci(6*n+3) - 2*Fibonacci(6*n) - 2*(-1)^n). - Ralf Stephan, May 14 2004
G.f.: 4*(-x^2+x)/((1+x)*(1-18*x+x^2)). - Ralf Stephan, May 14 2004
a(n) = Fibonacci(3*n)^2. - Gary Detlefs, Nov 28 2010
a(n) = (-1)^(n+1)*(Fibonacci(n)*Fibonacci(7*n)-Fibonacci(4*n)^2). - Gary Detlefs, Nov 28 2010
a(n) = (-2*(-1)^n+(9+4*sqrt(5))^(-n)+(9+4*sqrt(5))^n)/5. - Colin Barker, Mar 04 2016
a(n) = A014445(n)^2. - Sean A. Irvine, Nov 18 2018

Extensions

More terms from James Sellers

A087603 a(n) = (1/8)*Sum_{k=0..n} binomial(n,k)*Fibonacci(k)*8^k.

Original entry on oeis.org

1, 10, 155, 2100, 29525, 410750, 5731375, 79905000, 1114275625, 15537531250, 216660471875, 3021168937500, 42128015328125, 587444444843750, 8191485291484375, 114224297381250000, 1592774664844140625, 22210083004410156250, 309703436610529296875
Offset: 0

Views

Author

Benoit Cloitre, Oct 25 2003

Keywords

Comments

More generally a(n)=(1/x)*sum(k=0,n,binomial(n,k)*Fibonacci(k)*x^k) satisfies the recurrence formula a(n)=(x+2)*a(n-1)+(x^2-x-1)*a(n-2).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10,55},{1,10},30] (* Harvey P. Dale, Nov 26 2014 *)
  • PARI
    Vec(1/(1-10*x-55*x^2) + O(x^50)) \\ Colin Barker, Mar 30 2016

Formula

a(n) = 10*a(n-1)+55*a(n-2).
G.f.: -1/(-1+10*x+55*x^2). - R. J. Mathar, Dec 05 2007
a(n) = ((-(5-4*sqrt(5))^(1+n)+(5+4*sqrt(5))^(1+n)))/(8*sqrt(5)). - Colin Barker, Mar 30 2016

A099134 Expansion of x/(1-2x-19x^2).

Original entry on oeis.org

0, 1, 2, 23, 84, 605, 2806, 17107, 87528, 500089, 2663210, 14828111, 80257212, 442248533, 2409384094, 13221490315, 72221278416, 395650872817, 2163506035538, 11844378654599, 64795371984420, 354633938406221
Offset: 0

Views

Author

Paul Barry, Sep 29 2004

Keywords

Comments

Binomial transform is A099133. Binomial transform of x/(1-20x^2), or (0,1,0,20,0,400,0,8000,....). The inverse binomial transform of k^(n-1)Fib(n) has g.f. x/(1-(k-2)x-(k^2+k-1)x^2).
4*a(n) = (-1)^(n+1)*b(n;4) = 3^n*b(n;4/3), where b(n;d), n=0,1,..., d \in C, denote one of the delta-Fibonacci numbers defined in comments to A014445 (see also Witula-Slota's paper). Our first identity is equivalent to the second formula given below. We note that the sequence (4/3)^n*F(n) is the binomial transform of the sequence 3^(-n)*b(n;4). - Roman Witula, Jul 24 2012

References

  • R. Witula, D. Slota, \delta-Fibonacci Numbers, Appl. Anal. Discrete Math., 3 (2009), 310-329.

Crossrefs

Cf. A015447.

Programs

  • Mathematica
    Join[{a=0,b=1},Table[c=2*b+19*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
    CoefficientList[Series[x/(1-2x-19x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {2,19},{0,1},30] (* Harvey P. Dale, Dec 25 2019 *)

Formula

a(n) = 2a(n-1) + 19a(n-2).
a(n) = sum{k=0..n, (-1)^(n-k)binomial(n, k)4^(k-1)*Fib(k)}.
a(n) = sum{k=0..n, binomial(n, 2k+1)20^k}.
Previous Showing 21-30 of 43 results. Next