cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A065705 a(n) = Lucas(10*n).

Original entry on oeis.org

2, 123, 15127, 1860498, 228826127, 28143753123, 3461452808002, 425730551631123, 52361396397820127, 6440026026380244498, 792070839848372253127, 97418273275323406890123, 11981655542024930675232002, 1473646213395791149646646123, 181246502592140286475862241127
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 25 2003

Keywords

Comments

Lim_{n->infinity} a(n+1)/a(n) = (123 + sqrt(15125))/2 = 122.9918693812...
Lim_{n->infinity} a(n)/a(n+1) = (123 - sqrt(15125))/2 = 0.00813061875578...
From Peter Bala, Oct 14 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = 1/2*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^10) = 1.0081300769... = 1 + 1/(123 + 1/(15127 + 1/(1860498 + ...))).
Also F(-Phi^10) = 0.9918699143... has the continued fraction representation 1 - 1/(123 - 1/(15127 - 1/(1860498 - ...))) and the simple continued fraction expansion 1/(1 + 1/((123 - 2) + 1/(1 + 1/((15127 - 2) + 1/(1 + 1/((1860498 - 2) + 1/(1 + ...))))))).
F(Phi^10)*F(-Phi^10) = 0.9999338930... has the simple continued fraction expansion 1/(1 + 1/((123^2 - 4) + 1/(1 + 1/((15127^2 - 4) + 1/(1 + 1/((1860498^2 - 4) + 1/(1 + ...))))))).
1/2 + (1/2)*F(Phi^10)/F(-Phi^10) = 1.0081967213... has the simple continued fraction expansion 1 + 1/((123 - 2) + 1/(1 + 1/((1860498 - 2) + 1/(1 + 1/(28143753123 - 2) + 1/(1 + ...))))). (End)

Examples

			a(4) = 228826127 = 123*a(3) - a(2) = 123*1860498 - 15127=((123+sqrt(15125))/2)^4 + ( (123-sqrt(15125))/2)^4 =228826126.99999999562986 + 0.00000000437013 = 228826127.
a(4) = L(10 * 4) = L(40) = 228826127. - _Indranil Ghosh_, Feb 08 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A000032: a(n) = A000032(10*n).
Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A089772 (k = 11), A089775 (k = 12).

Programs

Formula

a(n) = 123*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 123.
a(n) = ((123 + sqrt(15125))/2)^n + ((123 - sqrt(15125))/2)^n.
a(n)^2 = a(2*n) + 2.
G.f.: (2 - 123*x)/(1 - 123*x + x^2). - Philippe Deléham, Nov 18 2008
From Peter Bala, Oct 14 2019: (Start)
a(n) = F(10*n+10)/F(10) - F(10*n-10)/F(10) = A049670(n+1) - A049670(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^10 = [34, 55; 55, 89].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
121*Sum_{n >= 1} 1/(a(n) - 125/a(n)) = 1: (125 = Lucas(10) + 2 and 121 = Lucas(10) - 2)
125*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 121/a(n)) = 1.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 123*x^2 + 15128*x^3 + ... is the o.g.f. for A049670. (End)
E.g.f.: exp((1/2)*(123 - 55*sqrt(5))*x)*(1 + exp(55*sqrt(5)*x)). - Stefano Spezia, Oct 18 2019
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^5 - 5*Lucas(2*n)^3 + 5*Lucas(2*n) = 2*T(5, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3( (123 - sqrt(15125))/2 )^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3( (sqrt(15125) - 123)/2 )^2),
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A153415 and A003499. (End)

A089775 Lucas numbers L(12n).

Original entry on oeis.org

2, 322, 103682, 33385282, 10749957122, 3461452808002, 1114577054219522, 358890350005878082, 115561578124838522882, 37210469265847998489922, 11981655542024930675232002, 3858055874062761829426214722, 1242282009792667284144565908482, 400010949097364802732720796316482
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 09 2004

Keywords

Comments

a(n+1)/a(n) converges to (322 + sqrt(103680))/2 = 321.996894379... a(0)/a(1) = 2/322; a(1)/a(2) = 322/103682; a(2)/a(3) = 103682/33385282; a(3)/a(4) = 33385282/10749957122; etc. Lim_{n -> inf} a(n)/a(n+1) = 0.00310562... = 2/(322 + sqrt(103680)) = (322 - sqrt(103680))/2.

Examples

			a(4) = 10749957122 = 322*a(3) - a(2) = 322*33385282 - 103682 = ((322 + sqrt(103680))/2)^4 + ((322 - sqrt(103680))/2)^4.
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.

Crossrefs

a(n) = A000032(12n).
Row 9 * 2 of array A188644
Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11).

Programs

  • Magma
    [ Lucas(12*n) : n in [0..70]]; // Vincenzo Librandi, Apr 15 2011
    
  • Mathematica
    Table[LucasL[12n], {n, 0, 13}] (* Indranil Ghosh, Mar 15 2017 *)
  • PARI
    Vec((2 - 322*x)/(1 - 322*x + x^2) + O(x^14)) \\ Indranil Ghosh, Mar 15 2017

Formula

a(n) = 322*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 322
a(n) = ((322 + sqrt(103680))/2)^n + ((322 - sqrt(103680))/2)^n.
(a(n))^2 = a(2n) + 2.
G.f.: (2-322*x)/(1-322*x+x^2). - Philippe Deléham, Nov 02 2008
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^6 - 6*Lucas(2*n)^4 + 9*Lucas(2*n)^2 - 2 = 2*T(6, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
320*Sum_{n >= 1} 1/(a(n) - 324/a(n)) = 1: (324 = Lucas(12) + 2 and 320 = Lucas(12) - 2)
324*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 320/a(n)) = 1.
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3( (322 - sqrt(103680))/2 )^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3( (sqrt(103680) - 322)/2 )^2),
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. (End)

Extensions

a(11) - a(13) from Vincenzo Librandi, Apr 15 2011

A309220 Square array A read by antidiagonals: the columns are given by A(n,1)=1, A(n,2)=n+1, A(n,3) = n^2+2n+3, A(n,4) = n^3+3*n^2+6*n+4, A(n,5) = n^4+4*n^3+10*n^2+12*n+7, ..., whose coefficients are given by A104509 (see also A118981).

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 11, 14, 1, 5, 18, 36, 34, 1, 6, 27, 76, 119, 82, 1, 7, 38, 140, 322, 393, 198, 1, 8, 51, 234, 727, 1364, 1298, 478, 1, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 1, 10, 83, 536, 2599, 8886, 19602, 24476, 14159, 2786, 1, 11, 102, 756, 4354, 18557
Offset: 1

Views

Author

N. J. A. Sloane, Aug 12 2019, based on R. J. Mathar's 2011 analysis of A118980

Keywords

Comments

As pointed out by Peter Munn, A117938 gives the same triangle, except that it has an additional diagonal at the right. - N. J. A. Sloane, Aug 13 2019

Examples

			The first few antidiagonals are:
1,
1,2,
1,3,6,
1,4,11,14,
1,5,18,36,34,
1,6,27,76,119,82,
1,7,38,140,322,393,198,
...
The first nine rows of A are
1, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, ...
1, 3, 11, 36, 119, 393, 1298, 4287, 14159, 46764, 154451, 510117, ...
1, 4, 18, 76, 322, 1364, 5778, 24476, 103682, 439204, 1860498, 7881196, ...
1, 5, 27, 140, 727, 3775, 19602, 101785, 528527, 2744420, 14250627, 73997555, ...
1, 6, 38, 234, 1442, 8886, 54758, 337434, 2079362, 12813606, 78960998, 486579594, ...
1, 7, 51, 364, 2599, 18557, 132498, 946043, 6754799, 48229636, 344362251, 2458765393, ...
1, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, 153992264, 1250895426, 10161155672, ...
1, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, 432083484, 3936182123, 35857722591, ...
1, 10, 102, 1030, 10402, 105050, 1060902, 10714070, 108201602, 1092730090, 11035502502, 111447755110, ...
		

Crossrefs

Cf. A104509, A117938, A118980, A118981, A099425 (top row), A006497 (essentially the 2nd row), A014448 (essentially the 3rd row), A087130 (essentially the 4th row).

Programs

  • Maple
    M := 12;
    A:=Array(1..2*M,1..2*M,0):
    for i from 1 to M do A[i,1]:=1; od:
    S := series((1 + x^2)/(1-x-x^2 + x*y), x, 120): # this is g.f. for A104509
    for n from 1 to M do
    R2 := expand(coeff(S, x, n));
    R3 := [seq(abs(coeff(R2,y,n-i)),i=0..n)];
    f := k-> add( R3[i]*k^(n-i+1), i=1..nops(R3) ): # this is the formula for the (n+1)-st column
    s1 := [seq(f(i),i=1..M)];
    for i from 1 to M do A[i,n+1]:=s1[i]; od:
    od:
    for i from 1 to M do lprint([seq(A[i,j],j=1..M)]); od:
    # alternative by R. J. Mathar, Aug 13 2019 :
    A104509 := proc(n,k)
        (1+x^2)/(1-x-x^2+x*y) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc:
    A309220 := proc(n::integer,k::integer)
        local x;
        add( abs(A104509(k-1,i))*x^i,i=0..k-1) ;
        subs(x=n,%) ;
    end proc:
    seq( seq(A309220(d-k,k),k=1..d-1),d=2..13) ;

A100233 a(n) = Lucas(3*n) - 1.

Original entry on oeis.org

1, 3, 17, 75, 321, 1363, 5777, 24475, 103681, 439203, 1860497, 7881195, 33385281, 141422323, 599074577, 2537720635, 10749957121, 45537549123, 192900153617, 817138163595, 3461452808001, 14662949395603, 62113250390417, 263115950957275, 1114577054219521
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2004

Keywords

Comments

Main diagonal of triangle A100232.

Crossrefs

Programs

  • Magma
    I:=[1, 3, 17]; [n le 3 select I[n] else 5*Self(n-1) -3*Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    Table[LucasL[3*n] - 1, {n,0,50}] (* or *) LinearRecurrence[{5,-3,-1}, {1,3,17}, 30] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    a(n)=if(n==0,1,n*polcoeff(log((1-x)/(1-4*x-x^2)+x*O(x^n)),n))
    
  • PARI
    Vec((1-2*x+5*x^2)/((1-x)*(1-4*x-x^2)) + O(x^40)) \\ Colin Barker, Jun 02 2016
    

Formula

a(n) = A014448(n) - 1.
a(n) = 4*a(n-1) + a(n-2) + 4 for n>1, with a(0)=1, a(1)=3.
G.f.: Sum_{n>=1} a(n)*x^n/n = log((1-x)/(1-4*x-x^2)).
a(n) = [x^n] ( 1 + 2*x + sqrt(1 + 2*x + 5*x^2) )^n. Cf. A016064. - Peter Bala, Jun 23 2015
From Colin Barker, Jun 02 2016: (Start)
a(n) = -1+(2-sqrt(5))^n+(2+sqrt(5))^n.
a(n) = 5*a(n-1)-3*a(n-2)-a(n-3) for n>2.
G.f.: (1-2*x+5*x^2) / ((1-x)*(1-4*x-x^2)).
(End)

Extensions

New definition from Ralf Stephan, Dec 01 2004

A163070 a(n) = ((4+sqrt(5))*(2+sqrt(5))^n + (4-sqrt(5))*(2-sqrt(5))^n)/2.

Original entry on oeis.org

4, 13, 56, 237, 1004, 4253, 18016, 76317, 323284, 1369453, 5801096, 24573837, 104096444, 440959613, 1867934896, 7912699197, 33518731684, 141987625933, 601469235416, 2547864567597, 10792927505804, 45719574590813
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009

Keywords

Comments

Binomial transform of A163069. Second binomial transform of A163141. Inverse binomial transform of A163071.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((4+r)*(2+r)^n+(4-r)*(2-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
    
  • Mathematica
    LinearRecurrence[{4,1},{4,13},30] (* Harvey P. Dale, Sep 19 2011 *)
  • PARI
    x='x+O('x^30); Vec((4-3*x)/(1-4*x-x^2)) \\ G. C. Greubel, Jan 08 2018

Formula

a(n) = 4*a(n-1) + a(n-2) for n > 1; a(0) = 4, a(1) = 13.
G.f.: (4-3*x)/(1-4*x-x^2).
a(n) = 2*A000032(3*n) + 5*A000045(3*n)/2 = 2*A014448(n) + 5*A001076(n). - Diego Rattaggi, Aug 09 2020

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 21 2009

A352362 Array read by ascending antidiagonals. T(n, k) = L(k, n) where L are the Lucas polynomials.

Original entry on oeis.org

2, 2, 0, 2, 1, 2, 2, 2, 3, 0, 2, 3, 6, 4, 2, 2, 4, 11, 14, 7, 0, 2, 5, 18, 36, 34, 11, 2, 2, 6, 27, 76, 119, 82, 18, 0, 2, 7, 38, 140, 322, 393, 198, 29, 2, 2, 8, 51, 234, 727, 1364, 1298, 478, 47, 0, 2, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 76, 2
Offset: 0

Views

Author

Peter Luschny, Mar 18 2022

Keywords

Examples

			Array starts:
n\k 0, 1,  2,   3,    4,     5,      6,       7,        8, ...
--------------------------------------------------------------
[0] 2, 0,  2,   0,    2,     0,      2,       0,        2, ... A010673
[1] 2, 1,  3,   4,    7,    11,     18,      29,       47, ... A000032
[2] 2, 2,  6,  14,   34,    82,    198,     478,     1154, ... A002203
[3] 2, 3, 11,  36,  119,   393,   1298,    4287,    14159, ... A006497
[4] 2, 4, 18,  76,  322,  1364,   5778,   24476,   103682, ... A014448
[5] 2, 5, 27, 140,  727,  3775,  19602,  101785,   528527, ... A087130
[6] 2, 6, 38, 234, 1442,  8886,  54758,  337434,  2079362, ... A085447
[7] 2, 7, 51, 364, 2599, 18557, 132498,  946043,  6754799, ... A086902
[8] 2, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, ... A086594
[9] 2, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, ... A087798
A007395|A059100|
    A001477 A079908
		

Crossrefs

Cf. A320570 (main diagonal), A114525, A309220 (variant), A117938 (variant), A352361 (Fibonacci polynomials), A350470 (Jacobsthal polynomials).

Programs

  • Maple
    T := (n, k) -> (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k:
    seq(seq(simplify(T(n - k, k)), k = 0..n), n = 0..10);
  • Mathematica
    Table[LucasL[k, n], {n, 0, 9}, {k, 0, 9}] // TableForm
    (* or *)
    T[ 0, k_] := 2 Mod[k+1, 2]; T[n_, 0] := 2;
    T[n_, k_] := n^k Hypergeometric2F1[1/2 - k/2, -k/2, 1 - k, -4/n^2];
    Table[T[n, k], {n, 0, 9}, {k, 0, 8}] // TableForm
  • PARI
    T(n, k) = ([0, 1; 1, k]^n*[2; k])[1, 1] ;
    export(T)
    for(k = 0, 9, print(parvector(10, n, T(n - 1, k))))

Formula

T(n, k) = Sum_{j=0..floor(k/2)} binomial(k-j, j)*(k/(k-j))*n^(k-2*j) for k >= 1.
T(n, k) = (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k.
T(n, k) = [x^k] ((2 - n*x)/(1 - n*x - x^2)).
T(n, k) = n^k*hypergeom([1/2 - k/2, -k/2], [1 - k], -4/n^2) for n,k >= 1.

A191347 Array read by antidiagonals: ((floor(sqrt(n)) + sqrt(n))^k + (floor(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 1, 1, 0, 8, 7, 4, 2, 1, 0, 16, 17, 10, 8, 2, 1, 0, 32, 41, 28, 32, 9, 2, 1, 0, 64, 99, 76, 128, 38, 10, 2, 1, 0, 128, 239, 208, 512, 161, 44, 11, 2, 1, 0, 256, 577, 568, 2048, 682, 196, 50, 12, 3, 1
Offset: 0

Views

Author

Charles L. Hohn, May 31 2011

Keywords

Examples

			1, 0,  0,   0,    0,    0,     0,      0,       0,        0,        0, ...
1, 1,  2,   4,    8,   16,    32,     64,     128,      256,      512, ...
1, 1,  3,   7,   17,   41,    99,    239,     577,     1393,     3363, ...
1, 1,  4,  10,   28,   76,   208,    568,    1552,     4240,    11584, ...
1, 2,  8,  32,  128,  512,  2048,   8192,   32768,   131072,   524288, ...
1, 2,  9,  38,  161,  682,  2889,  12238,   51841,   219602,   930249, ...
1, 2, 10,  44,  196,  872,  3880,  17264,   76816,   341792,  1520800, ...
1, 2, 11,  50,  233, 1082,  5027,  23354,  108497,   504050,  2341691, ...
1, 2, 12,  56,  272, 1312,  6336,  30592,  147712,   713216,  3443712, ...
1, 3, 18, 108,  648, 3888, 23328, 139968,  839808,  5038848, 30233088, ...
1, 3, 19, 117,  721, 4443, 27379, 168717, 1039681,  6406803, 39480499, ...
1, 3, 20, 126,  796, 5028, 31760, 200616, 1267216,  8004528, 50561600, ...
1, 3, 21, 135,  873, 5643, 36477, 235791, 1524177,  9852435, 63687141, ...
1, 3, 22, 144,  952, 6288, 41536, 274368, 1812352, 11971584, 79078912, ...
1, 3, 23, 153, 1033, 6963, 46943, 316473, 2133553, 14383683, 96969863, ...
...
		

Crossrefs

Row 1 is A000007, row 2 is A011782, row 3 is A001333, row 4 is A026150, row 5 is A081294, row 6 is A001077, row 7 is A084059, row 8 is A108851, row 9 is A084128, row 10 is A081341, row 11 is A005667, row 13 is A141041.
Row 3*2 is A002203, row 4*2 is A080040, row 5*2 is A155543, row 6*2 is A014448, row 8*2 is A080042, row 9*2 is A170931, row 11*2 is A085447.
Cf. A191348 which uses ceiling() in place of floor().

Programs

  • PARI
    T(n, k) = if (n==0, k==0, my(x=sqrtint(n)); sum(i=0, (k+1)\2, binomial(k, 2*i)*x^(k-2*i)*n^i));
    matrix(9,9, n, k, T(n-1,k-1)) \\ Michel Marcus, Aug 22 2019
    
  • PARI
    T(n, k) = if (k==0, 1, if (k==1, sqrtint(n), T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2));
    matrix(9, 9, n, k, T(n-1, k-1)) \\ Charles L. Hohn, Aug 22 2019

Formula

For each row n>=0 let T(n,0)=1 and T(n,1)=floor(sqrt(n)), then for each column k>=2: T(n,k)=T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2. - Charles L. Hohn, Aug 22 2019
T(n, k) = Sum_{i=0..floor((k+1)/2)} binomial(k, 2*i)*floor(sqrt(n))^(k-2*i)*n^i for n > 0, with T(0, 0) = 1 and T(0, k) = 0 for k > 0. - Michel Marcus, Aug 23 2019

A014731 Squares of even Lucas numbers.

Original entry on oeis.org

4, 16, 324, 5776, 103684, 1860496, 33385284, 599074576, 10749957124, 192900153616, 3461452808004, 62113250390416, 1114577054219524, 20000273725560976, 358890350005878084, 6440026026380244496, 115561578124838522884, 2073668380220713167376
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    (Table[LucasL@ n, {n, 0, 52}] /. n_ /; OddQ@ n -> Nothing)^2 (* Michael De Vlieger, Mar 04 2016 *)
    LinearRecurrence[{17,17,-1},{4,16,324},20] (* Harvey P. Dale, Nov 19 2024 *)
  • PARI
    Vec(4*(1-13*x-4*x^2)/((1+x)*(1-18*x+x^2)) + O(x^20)) \\ Colin Barker, Mar 04 2016

Formula

a(n) = Fibonacci(6*n+3) - 2*Fibonacci(6*n) + 2*(-1)^n. - Ralf Stephan, May 14 2004
G.f.: 4*(-4*x^2-13*x+1)/((1+x)*(1-18*x+x^2)). - Ralf Stephan, May 14 2004
From Colin Barker, Mar 04 2016: (Start)
a(n) = 2*(-1)^n+(9+4*sqrt(5))^(-n)+(9+4*sqrt(5))^n.
a(n) = 17*a(n-1)+17*a(n-2)-a(n-3) for n>2. (End)
a(n) = A014448(n)^2. - Sean A. Irvine, Nov 18 2018
a(n) = 5*Fibonacci(3*n)^2 + 4*(-1)^n. - Amiram Eldar, Jan 11 2022

Extensions

More terms from Erich Friedman.

A245580 Smallest Lucas number L(m) > L(n) that is divisible by the n-th Lucas number L(n) = A000204(n).

Original entry on oeis.org

3, 18, 76, 322, 1364, 5778, 24476, 103682, 439204, 1860498, 7881196, 33385282, 141422324, 599074578, 2537720636, 10749957122, 45537549124, 192900153618, 817138163596, 3461452808002, 14662949395604, 62113250390418, 263115950957276, 1114577054219522
Offset: 1

Views

Author

Michel Lagneau, Jul 26 2014

Keywords

Comments

Property: a(1) = L(2) and a(n) = L(3*n), for n >=2, where L = A000204 are the Lucas numbers.

Examples

			a(4) = 322 is the first Lucas number that is divisible by 7, the 4th Lucas number, so a(4) = 322. With the property a(n) = L(3*n), a(4) = A000204(12).
		

Crossrefs

Programs

  • Mathematica
    Table[k=1;While[Mod[LucasL[k],LucasL[n]] !=0||LucasL[k]==LucasL[n],k++];LucasL[k],{n,0,30}]
    LinearRecurrence[{4,1},{3,18,76},30] (* Harvey P. Dale, Jan 05 2022 *)
  • PARI
    Vec(-x*(x^2+6*x+3)/(x^2+4*x-1) + O(x^100)) \\ Colin Barker, Jul 31 2014

Formula

a(n) = A014448(n), n>1.
From Colin Barker, Jul 29 2014: (Start)
a(n) = (2-sqrt(5))^n+(2+sqrt(5))^n for n>1.
a(n) = 4*a(n-1)+a(n-2) for n>3.
G.f.: -x*(x^2+6*x+3) / (x^2+4*x-1). (End)

A245799 Lucas(3*n) - Fibonacci(n).

Original entry on oeis.org

2, 3, 17, 74, 319, 1359, 5770, 24463, 103661, 439170, 1860443, 7881107, 33385138, 141422091, 599074201, 2537720026, 10749956135, 45537547527, 192900151034, 817138159415, 3461452801237, 14662949384658, 62113250372707, 263115950928619, 1114577054173154
Offset: 0

Views

Author

Vincenzo Librandi, Aug 02 2014

Keywords

Crossrefs

Programs

  • Magma
    [Lucas(3*n) - Fibonacci(n): n in [0..30]];
    
  • Mathematica
    Table[LucasL[3 n] - Fibonacci[n], {n, 0, 30}] (* or *) CoefficientList[Series[(2 - 7 x + 6 x^2 + 5 x^3)/((1 - x - x^2) (1 - 4 x - x^2)), {x, 0, 40}], x]
  • Python
    import sympy
    {print(sympy.lucas(3*n)-sympy.fibonacci(n),end=', ') for n in range(50)}
    # Derek Orr, Aug 02 2014

Formula

G.f.: (2 - 7*x + 6*x^2 + 5*x^3)/((1 - x - x^2)(1 - 4*x - x^2)).
Previous Showing 31-40 of 43 results. Next