A367904
Number of sets of nonempty subsets of {1..n} with only one possible way to choose a sequence of different vertices of each edge.
Original entry on oeis.org
1, 2, 6, 38, 666, 32282, 3965886, 1165884638, 792920124786, 1220537093266802, 4187268805038970806, 31649452354183112810198, 522319168680465054600480906, 18683388426164284818805590810122, 1439689660962836496648920949576152046, 237746858936806624825195458794266076911118
Offset: 0
The set-system Y = {{1},{1,2},{2,3}} has choices (1,1,2), (1,1,3), (1,2,2), (1,2,3), of which only (1,2,3) has all different elements, so Y is counted under a(3).
The a(0) = 1 through a(2) = 6 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
The maximal case (n subsets) is
A003024.
The version for at least one choice is
A367902.
A059201 counts covering T_0 set-systems.
-
Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,3}]
A307249
Number of simplicial complexes with n nodes.
Original entry on oeis.org
1, 1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966, 286386577668298410623295216696338374471993
Offset: 0
Maximal simplices of the a(0) = 1 through a(3) = 9 simplicial complexes:
{} {{1}} {{12}} {{123}}
{{1}{2}} {{1}{23}}
{{2}{13}}
{{3}{12}}
{{12}{13}}
{{12}{23}}
{{13}{23}}
{{1}{2}{3}}
{{12}{13}{23}}
- Francisco Ponce Carrión and Seth Sullivant, Marginal Independence and Partial Set Partitions, arXiv:2402.16292 [math.ST], 2024. See p. 21.
- Gus Wiseman, Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons.
Cf.
A000372,
A003182,
A006126,
A006602,
A014466,
A261005,
A293606,
A293993,
A305000,
A305844,
A306550,
A317674,
A319721,
A320449.
-
nn=5;
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[stableSets[Subsets[Range[n],{2,n}],SubsetQ]],{n,0,nn}]
A006602
a(n) is the number of hierarchical models on n unlabeled factors or variables with linear terms forced.
Original entry on oeis.org
2, 1, 2, 5, 20, 180, 16143, 489996795, 1392195548399980210, 789204635842035039135545297410259322
Offset: 0
From _Gus Wiseman_, Feb 20 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(4) = 20 antichains:
{} {{1}} {{12}} {{123}} {{1234}}
{{}} {{1}{2}} {{1}{23}} {{1}{234}}
{{13}{23}} {{12}{34}}
{{1}{2}{3}} {{14}{234}}
{{12}{13}{23}} {{1}{2}{34}}
{{134}{234}}
{{1}{24}{34}}
{{1}{2}{3}{4}}
{{13}{24}{34}}
{{14}{24}{34}}
{{13}{14}{234}}
{{12}{134}{234}}
{{1}{23}{24}{34}}
{{124}{134}{234}}
{{12}{13}{24}{34}}
{{14}{23}{24}{34}}
{{12}{13}{14}{234}}
{{123}{124}{134}{234}}
{{13}{14}{23}{24}{34}}
{{12}{13}{14}{23}{24}{34}}
(End)
- Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis. MIT Press, 1975, p. 34. [In part (e), the Hierarchy Principle for log-linear models is defined. It essentially says that if a higher-order parameter term is included in the log-linear model, then all the lower-order parameter terms should also be included. - Petros Hadjicostas, Apr 10 2020]
- V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
- A. A. Mcintosh, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Aniruddha Biswas and Palash Sarkar, Counting Unate and Monotone Boolean Functions Under Restrictions of Balancedness and Non-Degeneracy, J. Int. Seq. (2025) Vol. 28, Art. No. 25.3.4. See p. 14.
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11(4) (1999), 127-138 (translated in Discrete Mathematics and Applications, 9(6) (1999), 593-605).
- C. Lienkaemper, When do neural codes come from convex or good covers?, 2015.
- C. L. Mallows, Emails to N. J. A. Sloane, Jun-Jul 1991
- Gus Wiseman, Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons.
Cf.
A000372,
A003182,
A006126 (labeled case),
A007411,
A014466,
A261005,
A293993,
A304997,
A304998,
A304999,
A305001,
A305855,
A306505,
A320449,
A321679.
a(6) from A. Boneh, 32 Hantkeh St., Haifa 34608, Israel, Mar 31 2000
A001206
Number of self-dual monotone Boolean functions of n variables.
Original entry on oeis.org
0, 1, 2, 4, 12, 81, 2646, 1422564, 229809982112, 423295099074735261880
Offset: 0
a(2) = 1 + 1 = 2;
a(3) = 1 + 3 = 4;
a(4) = 1 + 7 + 3 + 1 = 12;
a(5) = 1 + 15 + 30 + 30 + 5 = 81;
a(6) = 1 + 31 + 195 + 605 + 780 + 543 + 300 + 135 + 45 + 10 + 1 = 2646;
a(7) = 1 + 63 + 1050 + 9030 + 41545 + 118629 + 233821 + 329205 + 327915 + 224280 + 100716 + 29337 + 5950 + 910 + 105 + 1 = 1422564.
Cf. A059090.
From _Gus Wiseman_, Jul 03 2019: (Start)
The a(1) = 1 through a(4) = 12 intersecting antichains of nonempty sets (see Jovovic and Kilibarda's comment):
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{1,2}} {{3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
(End)
- Martin Aigner and Günter M. Ziegler, Proofs from THE BOOK, Third Edition, Springer-Verlag, 2004. See chapter 22.
- V. Jovovic and G. Kilibarda, The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
- W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
- Charles F. Mills and W. M. Mills, The calculation of λ(8), preprint, 1979. Gives a(8).
- E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Springer, 2005.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Taras Banakh, Volodymyr Gavrylkiv, Automorphism groups of superextensions of groups, arXiv:1802.05804 [math.GR], 2018.
- Jan C. Bioch and Toshihide Ibaraki, Generating and approximating nondominated coteries, IEEE Transactions on parallel and distributed systems 6 (1995), 905-914.
- A. E. Brouwer and A. Verbeek, Counting families of mutually intersecting sets, Report ZN 41, March 1972, Math. Centr., Amsterdam. Gives a(n) for n <= 7.
- A. E. Brouwer and A. Verbeek, Counting families of mutually intersecting sets, Electronic Journal of Combinatorics, Volume 20, Issue 2 (2013), Paper #P8.
- Gábor Damásdi, Stefan Felsner, António Girão, Balázs Keszegh, David Lewis, Dániel T. Nagy, Torsten Ueckerdt, On Covering Numbers, Young Diagrams, and the Local Dimension of Posets, arXiv:2001.06367 [math.CO], 2020.
- Jesús A. De Loera, Serkan Hoşten, Robert Krone, Lily Silverstein, Average Behavior of Minimal Free Resolutions of Monomial Ideals, arXiv:1802.06537 [math.AC], 2018.
- Serkan Hosten and Walter D. Morris, Jr., The order dimension of the complete graph, Discrete Math. 201 (1999), pp. 133-139.
- D. E. Loeb, Challenges in playing multiplayer games, in Levy and Beal, editors, Heuristic Programming in Artificial Intelligence, vol. 4, Ellis Horwood, 1994. [broken link]
- D. E. Loeb and A. Meyerowitz, The maximal intersecting family of sets graph, in H. Barcelo and G. Kalai, editors, Proceedings of the Conference on Jerusalem Combinatorics 1993. AMS series Contemporary Mathematics, 1994.
- Bartłomiej Pawelski, Counting and generating monotone Boolean functions, Doctoral Diss., Univ. Gdańsk, (Poland, 2024). See pp. 12, 15, 38, 49, 58, 73.
- Bartlomiej Pawelski and Andrzej Szepietowski, Divisibility properties of Dedekind numbers, arXiv:2302.04615 [math.CO], 2023.
- N. M. Rivière, Recursive formulas on free distributive lattices, J. Combinatorial Theory 5 1968 229--234. MR0231764 (38 #92).
- Tom Trotter, An Application of the Erdős/Stone Theorem, Slides, Sept. 13, 2001.
- Index entries for sequences related to Boolean functions
The case with empty edges allowed is
A326372.
The case with empty intersection is
A326366.
The inverse binomial transform is the covering case
A305844.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]],{n,0,5}] (* Gus Wiseman, Jul 03 2019 *)
a(8) due to C. F. Mills & W. H. Mills, 1979
A305000
Number of labeled antichains of finite sets spanning some subset of {1,...,n} with singleton edges allowed.
Original entry on oeis.org
1, 2, 8, 72, 1824, 220608, 498243968, 309072306743552, 14369391925598802012151296, 146629927766168786239127150948525247729660416
Offset: 0
The a(2) = 8 antichains:
{}
{{1}}
{{2}}
{{1,2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
- Aniruddha Biswas and Palash Sarkar, Counting unate and balanced monotone Boolean functions, arXiv:2304.14069 [math.CO], 2023.
- Aniruddha Biswas and Palash Sarkar, Counting Unate and Monotone Boolean Functions Under Restrictions of Balancedness and Non-Degeneracy, J. Int. Seq. (2025) Vol. 28, Art. No. 25.3.4. See pp. 4, 12.
- Gus Wiseman, Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons.
A305001
Number of labeled antichains of finite sets spanning n vertices without singletons.
Original entry on oeis.org
1, 0, 1, 5, 87, 6398, 7745253, 2414573042063, 56130437190053518791691, 286386577668298410118121281898931424413687
Offset: 0
The a(3) = 5 antichains:
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
The binomial transform is the non-covering case
A307249.
The second binomial transform is
A014466.
Cf.
A000372,
A003182,
A006126,
A006602,
A046165,
A261005,
A304996,
A304997,
A304998,
A304999,
A305000,
A326358,
A326359.
-
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],And[Union@@#==Range[n],#=={}||Intersection@@#=={}]&]],{n,0,5}] (* Gus Wiseman, Jul 03 2019 *)
A326878
Number of topologies whose points are a subset of {1..n}.
Original entry on oeis.org
1, 2, 7, 45, 500, 9053, 257151, 11161244, 725343385, 69407094565, 9639771895398, 1919182252611715, 541764452276876719, 214777343584048313318, 118575323291814379721651, 90492591258634595795504697, 94844885130660856889237907260, 135738086271526574073701454370969, 263921383510041055422284977248713291
Offset: 0
The a(0) = 1 through a(2) = 7 topologies:
{{}} {{}} {{}}
{{},{1}} {{},{1}}
{{},{2}}
{{},{1,2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
Binomial transform of
A000798 (the covering case).
-
Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4}]
(* Second program: *)
A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]];
a[n_] := Sum[Binomial[n, k]*A000798[[k+1]], {k, 0, n}];
a /@ Range[0, Length[A000798]-1] (* Jean-François Alcover, Dec 30 2019 *)
A007153
Dedekind numbers: number of monotone Boolean functions or antichains of subsets of an n-set containing at least one nonempty set.
Original entry on oeis.org
0, 1, 4, 18, 166, 7579, 7828352, 2414682040996, 56130437228687557907786, 286386577668298411128469151667598498812364
Offset: 0
a(2)=4 from the antichains {{1}}, {{2}}, {{1,2}}, {{1},{2}}.
- I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
- J. L. Arocha, (1987) "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21.
- R. Balbes and P. Dwinger, Distributive Lattices, Univ. Missouri Press, 1974, see p. 97. - N. J. A. Sloane, Aug 15 2010
- J. Berman, "Free spectra of 3-element algebras", in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
- G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
- M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.
- W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
- S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 349.
- K. S. Brown, Dedekind's problem
- J. Berman, Free spectra of 3-element algebras, R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983. (Annotated scanned copy)
- Sara Billey and Matjaž Konvalinka, Generalized rank functions and quilts of alternating sign matrices, arXiv:2412.03236 [math.CO], 2024. See pp. 32, 35.
- R. Church, Numerical analysis of certain free distributive lattices, Duke Math. J., 6 (1940), 732-734.
- Jacob North Clark and Stephen Montgomery-Smith, Shapley-like values without symmetry, arXiv:1809.07747 [econ.TH], 2018.
- J. D. Farley, Was Gelfand right? The many loves of lattice theory, Notices AMS 69:2 (2022), 190-197.
- J. L. King, Brick tiling and monotone Boolean functions
- D. J. Kleitman, On Dedekind's problem: The number of monotone Boolean functions, Proc. Amer. Math. Soc. 21 1969 677-682.
- D. J. Kleitman and G. Markowsky, On Dedekind's problem: the number of isotone Boolean functions. II, Trans. Amer. Math. Soc. 213 (1975), 373-390.
- N. M. Rivière, Recursive formulas on free distributive lattices, J. Combin. Theory, 5 (1968), 229-234. - _N. J. A. Sloane_, Aug 15 2010
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- M. Ward, Note on the order of the free distributive lattice, Bull. Amer. Math. Soc., (1946), Abstract 52-5-135 p.423. - _N. J. A. Sloane_, Aug 15 2010
- Eric Weisstein's World of Mathematics, Antichain
- D. H. Wiedemann, A computation of the eighth Dedekind number, Order 8 (1991) 5-6.
- K. Yamamoto, Logarithmic order of free distributive lattice, Math. Soc. Japan, 6 (1954), 343-353. - _N. J. A. Sloane_, Aug 15 2010
- Index entries for sequences related to Boolean functions
Last term from D. H. Wiedemann, personal communication
A326703
BII-numbers of chains of nonempty sets.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 8, 16, 17, 24, 32, 34, 40, 64, 65, 66, 68, 69, 70, 72, 80, 81, 88, 96, 98, 104, 128, 256, 257, 384, 512, 514, 640, 1024, 1025, 1026, 1028, 1029, 1030, 1152, 1280, 1281, 1408, 1536, 1538, 1664, 2048, 2056, 2176, 4096, 4097, 4104, 4112, 4113, 4120
Offset: 1
The sequence of all chains of nonempty sets together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
72: {{3},{1,2,3}}
80: {{1,3},{1,2,3}}
81: {{1},{1,3},{1,2,3}}
88: {{3},{1,3},{1,2,3}}
96: {{2,3},{1,2,3}}
98: {{2},{2,3},{1,2,3}}
Chains of nonempty sets are counted by
A000629.
MM-numbers of chains of multisets are
A318991.
BII-numbers of antichains of nonempty sets are
A326704.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],stableQ[bpe/@bpe[#],!SubsetQ[#1,#2]&&!SubsetQ[#2,#1]&]&]
-
from itertools import chain, count, combinations, islice
from sympy.combinatorics.subsets import ksubsets
def subsets(x):
for i in range(1,len(x)):
for j in ksubsets(x,i):
yield(list(j))
def a_gen(): #generator of terms
yield 0
for n in count(1):
t,v,j = [[]],[],0
for i in chain.from_iterable(combinations(range(1, n+1), r) for r in range(n+1)):
if n in i:
t[j].append([list(i)])
while n:
t.append([])
for i in t[j]:
if len(i[-1]) > 1:
for k in list(subsets(i[-1])):
t[j+1].append(i.copy()+[k])
if len(t[j+1]) < 1:
break
j += 1
for j in chain.from_iterable(t):
v.append(sum(2**(sum(2**(m-1) for m in k)-1) for k in j))
yield from sorted(v)
A326703_list = list(islice(a_gen(), 55)) # John Tyler Rascoe, Jun 07 2024
A367769
Number of finite sets of nonempty non-singleton subsets of {1..n} contradicting a strict version of the axiom of choice.
Original entry on oeis.org
0, 0, 0, 1, 1490, 67027582, 144115188036455750, 1329227995784915872903806998967001298, 226156424291633194186662080095093570025917938800079226639565284090686126876
Offset: 0
The a(3) = 1 set-system is: {{1,2},{1,3},{2,3},{1,2,3}}.
Set-systems without singletons are counted by
A016031, covering
A323816.
The version allowing singletons and empty edges is
A367901.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.
Cf.
A007716,
A092918,
A102896,
A283877,
A306445,
A326031,
A355739,
A355740,
A355741,
A367904,
A367905.
-
Table[Length[Select[Subsets[Select[Subsets[Range[n]], Length[#]>1&]], Select[Tuples[#], UnsameQ@@#&]=={}&]], {n,0,3}]
Comments