cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 84 results. Next

A367904 Number of sets of nonempty subsets of {1..n} with only one possible way to choose a sequence of different vertices of each edge.

Original entry on oeis.org

1, 2, 6, 38, 666, 32282, 3965886, 1165884638, 792920124786, 1220537093266802, 4187268805038970806, 31649452354183112810198, 522319168680465054600480906, 18683388426164284818805590810122, 1439689660962836496648920949576152046, 237746858936806624825195458794266076911118
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2023

Keywords

Examples

			The set-system Y = {{1},{1,2},{2,3}} has choices (1,1,2), (1,1,3), (1,2,2), (1,2,3), of which only (1,2,3) has all different elements, so Y is counted under a(3).
The a(0) = 1 through a(2) = 6 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

The maximal case (n subsets) is A003024.
The version for at least one choice is A367902.
The version for no choices is A367903, no singletons A367769, ranks A367907.
These set-systems have ranks A367908, nonzero A367906.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,3}]

Formula

a(n) = A367902(n) - A367772(n). - Christian Sievers, Jul 26 2024
Binomial transform of A003024. - Christian Sievers, Aug 12 2024

Extensions

a(5)-a(8) from Christian Sievers, Jul 26 2024
More terms from Christian Sievers, Aug 12 2024

A307249 Number of simplicial complexes with n nodes.

Original entry on oeis.org

1, 1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966, 286386577668298410623295216696338374471993
Offset: 0

Views

Author

Gus Wiseman, Mar 31 2019

Keywords

Comments

Except for a(0) = 1, this is also the number of antichains of nonempty sets covering n vertices (A006126). There are two antichains of size zero, namely {} and {{}}, while there is only one simplicial complex, namely {}. The unlabeled case is A261005. The non-covering case is A014466.

Examples

			Maximal simplices of the a(0) = 1 through a(3) = 9 simplicial complexes:
  {}    {{1}}  {{12}}    {{123}}
               {{1}{2}}  {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
		

Crossrefs

Programs

  • Mathematica
    nn=5;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{2,n}],SubsetQ]],{n,0,nn}]

Formula

Inverse binomial transform of A014466.

Extensions

a(9) from Dmitry I. Ignatov, Nov 25 2023

A006602 a(n) is the number of hierarchical models on n unlabeled factors or variables with linear terms forced.

Original entry on oeis.org

2, 1, 2, 5, 20, 180, 16143, 489996795, 1392195548399980210, 789204635842035039135545297410259322
Offset: 0

Views

Author

Keywords

Comments

Also number of pure (= irreducible) group-testing histories of n items - A. Boneh, Mar 31 2000
Also number of antichain covers of an unlabeled n-set, so a(n) equals first differences of A003182. - Vladeta Jovovic, Goran Kilibarda, Aug 18 2000
Also number of inequivalent (under permutation of variables) nondegenerate monotone Boolean functions of n variables. We say h and g (functions of n variables) are equivalent if there exists a permutation p of S_n such that hp=g. E.g., a(3)=5 because xyz, xy+xz+yz, x+yz+xyz, xy+xz+xyz, x+y+z+xy+xz+yz+xyz are 5 inequivalent nondegenerate monotone Boolean functions that generate (by permutation of variables) the other 4. For example, y+xz+xyz can be obtained from x+yz+xyz by exchanging x and y. - Alan Veliz-Cuba (alanavc(AT)vt.edu), Jun 16 2006
The non-spanning/covering case is A003182. The labeled case is A006126. - Gus Wiseman, Feb 20 2019

Examples

			From _Gus Wiseman_, Feb 20 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(4) = 20 antichains:
  {}    {{1}}  {{12}}    {{123}}         {{1234}}
  {{}}         {{1}{2}}  {{1}{23}}       {{1}{234}}
                         {{13}{23}}      {{12}{34}}
                         {{1}{2}{3}}     {{14}{234}}
                         {{12}{13}{23}}  {{1}{2}{34}}
                                         {{134}{234}}
                                         {{1}{24}{34}}
                                         {{1}{2}{3}{4}}
                                         {{13}{24}{34}}
                                         {{14}{24}{34}}
                                         {{13}{14}{234}}
                                         {{12}{134}{234}}
                                         {{1}{23}{24}{34}}
                                         {{124}{134}{234}}
                                         {{12}{13}{24}{34}}
                                         {{14}{23}{24}{34}}
                                         {{12}{13}{14}{234}}
                                         {{123}{124}{134}{234}}
                                         {{13}{14}{23}{24}{34}}
                                         {{12}{13}{14}{23}{24}{34}}
(End)
		

References

  • Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis. MIT Press, 1975, p. 34. [In part (e), the Hierarchy Principle for log-linear models is defined. It essentially says that if a higher-order parameter term is included in the log-linear model, then all the lower-order parameter terms should also be included. - Petros Hadjicostas, Apr 10 2020]
  • V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
  • A. A. Mcintosh, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A007411(n) + 1.
First differences of A003182. - Gus Wiseman, Feb 23 2019

Extensions

a(6) from A. Boneh, 32 Hantkeh St., Haifa 34608, Israel, Mar 31 2000
Entry revised by N. J. A. Sloane, Jul 23 2006
a(7) from A007411 and A003182. - N. J. A. Sloane, Aug 13 2015
Named edited by Petros Hadjicostas, Apr 08 2020
a(8) from A003182. - Bartlomiej Pawelski, Nov 27 2022
a(9) from A007411. - Dmitry I. Ignatov, Nov 27 2023

A001206 Number of self-dual monotone Boolean functions of n variables.

Original entry on oeis.org

0, 1, 2, 4, 12, 81, 2646, 1422564, 229809982112, 423295099074735261880
Offset: 0

Views

Author

Keywords

Comments

Sometimes called Hosten-Morris numbers (or HM numbers).
Also the number of simplicial complexes on the set {1, ..., n-1} such that no pair of faces covers all of {1, ..., n-1}. [Miller-Sturmfels] - N. J. A. Sloane, Feb 18 2008
Also the maximal number of generators of a neighborly monomial ideal in n variables. [Miller-Sturmfels]. - N. J. A. Sloane, Feb 18 2008
Also the number of intersecting antichains on a labeled (n-1)-set or (n-1)-variable Boolean functions in the Post class F(7,2). Cf. A059090. - Vladeta Jovovic, Goran Kilibarda, Dec 28 2000
Also the number of nondominated coteries on n members. - Don Knuth, Sep 01 2005
The number of maximal families of intersecting subsets of an n-element set. - Bridget Tenner, Nov 16 2006
Rivière gives a(n) for n <= 5. - N. J. A. Sloane, May 12 2012

Examples

			a(2) = 1 + 1 = 2;
a(3) = 1 + 3 = 4;
a(4) = 1 + 7 + 3 + 1 = 12;
a(5) = 1 + 15 + 30 + 30 + 5 = 81;
a(6) = 1 + 31 + 195 + 605 + 780 + 543 + 300 + 135 + 45 + 10 + 1 = 2646;
a(7) = 1 + 63 + 1050 + 9030 + 41545 + 118629 + 233821 + 329205 + 327915 + 224280 + 100716 + 29337 + 5950 + 910 + 105 + 1 = 1422564.
Cf. A059090.
From _Gus Wiseman_, Jul 03 2019: (Start)
The a(1) = 1 through a(4) = 12 intersecting antichains of nonempty sets (see Jovovic and Kilibarda's comment):
  {}  {}     {}       {}
      {{1}}  {{1}}    {{1}}
             {{2}}    {{2}}
             {{1,2}}  {{3}}
                      {{1,2}}
                      {{1,3}}
                      {{2,3}}
                      {{1,2,3}}
                      {{1,2},{1,3}}
                      {{1,2},{2,3}}
                      {{1,3},{2,3}}
                      {{1,2},{1,3},{2,3}}
(End)
		

References

  • Martin Aigner and Günter M. Ziegler, Proofs from THE BOOK, Third Edition, Springer-Verlag, 2004. See chapter 22.
  • V. Jovovic and G. Kilibarda, The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • Charles F. Mills and W. M. Mills, The calculation of λ(8), preprint, 1979. Gives a(8).
  • E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Springer, 2005.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The case with empty edges allowed is A326372.
The maximal case is A007363, or A326363 with empty edges allowed.
The case with empty intersection is A326366.
The inverse binomial transform is the covering case A305844.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]],{n,0,5}] (* Gus Wiseman, Jul 03 2019 *)

Formula

a(n+1) = Sum_{m=0..A037952(n)} A059090(n, m).
For n > 0, a(n) = A326372(n - 1) - 1. - Gus Wiseman, Jul 03 2019

Extensions

a(8) due to C. F. Mills & W. H. Mills, 1979
a(8) from Daniel E. Loeb, Jan 04 1996
a(8) confirmed by Don Knuth, Feb 08 2008
a(9) from Andries E. Brouwer, Aug 25 2012

A305000 Number of labeled antichains of finite sets spanning some subset of {1,...,n} with singleton edges allowed.

Original entry on oeis.org

1, 2, 8, 72, 1824, 220608, 498243968, 309072306743552, 14369391925598802012151296, 146629927766168786239127150948525247729660416
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

Only the non-singleton edges are required to form an antichain.
Number of non-degenerate unate Boolean functions of n or fewer variables. - Aniruddha Biswas, May 11 2024

Examples

			The a(2) = 8 antichains:
  {}
  {{1}}
  {{2}}
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Formula

Binomial transform of A304999.
Inverse binomial transform of A245079. - Aniruddha Biswas, May 11 2024

Extensions

a(5)-a(8) from Gus Wiseman, May 31 2018
a(9) from Aniruddha Biswas, May 11 2024

A305001 Number of labeled antichains of finite sets spanning n vertices without singletons.

Original entry on oeis.org

1, 0, 1, 5, 87, 6398, 7745253, 2414573042063, 56130437190053518791691, 286386577668298410118121281898931424413687
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

From Gus Wiseman, Jul 03 2019: (Start)
Also the number of antichains covering n vertices and having empty intersection (meaning there is no vertex in common to all the edges). For example, the a(3) = 5 antichains are:
{{3},{1,2}}
{{2},{1,3}}
{{1},{2,3}}
{{1},{2},{3}}
{{1,2},{1,3},{2,3}}
(End)

Examples

			The a(3) = 5 antichains:
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

The binomial transform is the non-covering case A307249.
The second binomial transform is A014466.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],And[Union@@#==Range[n],#=={}||Intersection@@#=={}]&]],{n,0,5}] (* Gus Wiseman, Jul 03 2019 *)

Extensions

a(9) from A307249 - Dmitry I. Ignatov, Nov 27 2023

A326878 Number of topologies whose points are a subset of {1..n}.

Original entry on oeis.org

1, 2, 7, 45, 500, 9053, 257151, 11161244, 725343385, 69407094565, 9639771895398, 1919182252611715, 541764452276876719, 214777343584048313318, 118575323291814379721651, 90492591258634595795504697, 94844885130660856889237907260, 135738086271526574073701454370969, 263921383510041055422284977248713291
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2019

Keywords

Examples

			The a(0) = 1 through a(2) = 7 topologies:
  {{}}  {{}}      {{}}
        {{},{1}}  {{},{1}}
                  {{},{2}}
                  {{},{1,2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Binomial transform of A000798 (the covering case).

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&SubsetQ[#,Union[Union@@@Tuples[#,2],Intersection@@@Tuples[#,2]]]&]],{n,0,4}]
    (* Second program: *)
    A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {, }][[All, 2]];
    a[n_] := Sum[Binomial[n, k]*A000798[[k+1]], {k, 0, n}];
    a /@ Range[0, Length[A000798]-1] (* Jean-François Alcover, Dec 30 2019 *)

Formula

From Geoffrey Critzer, Jul 12 2022: (Start)
E.g.f.: exp(x)*A(exp(x)-1) where A(x) is the e.g.f. for A001035.
a(n) = Sum_{k=0..n} binomial(n,k)*A000798(k). (End)

A007153 Dedekind numbers: number of monotone Boolean functions or antichains of subsets of an n-set containing at least one nonempty set.

Original entry on oeis.org

0, 1, 4, 18, 166, 7579, 7828352, 2414682040996, 56130437228687557907786, 286386577668298411128469151667598498812364
Offset: 0

Views

Author

Keywords

Comments

Equivalently, the number of elements of the free distributive lattice with n generators.
A monotone Boolean function is an increasing functions from P(S), the set of subsets of S, to {0,1}.
The count of antichains excludes the empty antichain which contains no subsets and the antichain consisting of only the empty set.
The number of continuous functions f : R^n->R with f(x_1,..,x_n) in {x_1,..,x_n}. - Jan Fricke, Feb 12 2004
From Robert FERREOL, Mar 23 2009: (Start)
a(n) is also the number of reduced normal conjunctive forms with n variables without negation.
For example the 18 forms for n=3 are :
a
b
c
a or b
a or c
b or c
a or b or c
a and b
a and c
b and c
a and (b or c)
b and (a or c)
c and (a or b)
(a or b) and (a or c)
(b or a) and (b or c)
(c or a) and (c or b)
a and b and c
(a or b) and (a or c) and (b or c)
(End)

Examples

			a(2)=4 from the antichains {{1}}, {{2}}, {{1,2}}, {{1},{2}}.
		

References

  • I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • J. L. Arocha, (1987) "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21.
  • R. Balbes and P. Dwinger, Distributive Lattices, Univ. Missouri Press, 1974, see p. 97. - N. J. A. Sloane, Aug 15 2010
  • J. Berman, "Free spectra of 3-element algebras", in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 349.

Crossrefs

Equals A000372 - 2 and A014466 - 1.. Cf. A003182.

Extensions

Last term from D. H. Wiedemann, personal communication
Additional comments from Michael Somos, Jun 10 2002
Term a(9) (using A000372) from Joerg Arndt, Apr 07 2023

A326703 BII-numbers of chains of nonempty sets.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 16, 17, 24, 32, 34, 40, 64, 65, 66, 68, 69, 70, 72, 80, 81, 88, 96, 98, 104, 128, 256, 257, 384, 512, 514, 640, 1024, 1025, 1026, 1028, 1029, 1030, 1152, 1280, 1281, 1408, 1536, 1538, 1664, 2048, 2056, 2176, 4096, 4097, 4104, 4112, 4113, 4120
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, it follows that the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. In a chain of sets, every edge is a subset or superset of every other edge.

Examples

			The sequence of all chains of nonempty sets together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    4: {{1,2}}
    5: {{1},{1,2}}
    6: {{2},{1,2}}
    8: {{3}}
   16: {{1,3}}
   17: {{1},{1,3}}
   24: {{3},{1,3}}
   32: {{2,3}}
   34: {{2},{2,3}}
   40: {{3},{2,3}}
   64: {{1,2,3}}
   65: {{1},{1,2,3}}
   66: {{2},{1,2,3}}
   68: {{1,2},{1,2,3}}
   69: {{1},{1,2},{1,2,3}}
   70: {{2},{1,2},{1,2,3}}
   72: {{3},{1,2,3}}
   80: {{1,3},{1,2,3}}
   81: {{1},{1,3},{1,2,3}}
   88: {{3},{1,3},{1,2,3}}
   96: {{2,3},{1,2,3}}
   98: {{2},{2,3},{1,2,3}}
		

Crossrefs

Chains of nonempty sets are counted by A000629.
MM-numbers of chains of multisets are A318991.
BII-numbers of antichains of nonempty sets are A326704.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,100],stableQ[bpe/@bpe[#],!SubsetQ[#1,#2]&&!SubsetQ[#2,#1]&]&]
  • Python
    from itertools import chain, count, combinations, islice
    from sympy.combinatorics.subsets import ksubsets
    def subsets(x):
        for i in range(1,len(x)):
            for j in ksubsets(x,i):
                yield(list(j))
    def a_gen(): #generator of terms
        yield 0
        for n in count(1):
            t,v,j = [[]],[],0
            for i in chain.from_iterable(combinations(range(1, n+1), r) for r in range(n+1)):
                if n in i:
                    t[j].append([list(i)])
            while n:
                t.append([])
                for i in t[j]:
                    if len(i[-1]) > 1:
                        for k in list(subsets(i[-1])):
                            t[j+1].append(i.copy()+[k])
                if len(t[j+1]) < 1:
                    break
                j += 1
            for j in chain.from_iterable(t):
                v.append(sum(2**(sum(2**(m-1) for m in k)-1) for k in j))
            yield from sorted(v)
    A326703_list = list(islice(a_gen(), 55)) # John Tyler Rascoe, Jun 07 2024

A367769 Number of finite sets of nonempty non-singleton subsets of {1..n} contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 0, 1, 1490, 67027582, 144115188036455750, 1329227995784915872903806998967001298, 226156424291633194186662080095093570025917938800079226639565284090686126876
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
Includes all set-systems with more edges than covered vertices, but this condition is not sufficient.

Examples

			The a(3) = 1 set-system is: {{1,2},{1,3},{2,3},{1,2,3}}.
		

Crossrefs

Set-systems without singletons are counted by A016031, covering A323816.
The complement is A367770, with singletons allowed A367902 (ranks A367906).
The version for simple graphs is A367867, covering A367868.
The version allowing singletons and empty edges is A367901.
The version allowing singletons is A367903, ranks A367907.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Subsets[Range[n]], Length[#]>1&]], Select[Tuples[#], UnsameQ@@#&]=={}&]], {n,0,3}]

Formula

a(n) = 2^(2^n-n-1) - A367770(n) = A016031(n+1) - A367770(n). - Christian Sievers, Jul 28 2024

Extensions

a(6)-a(8) from Christian Sievers, Jul 28 2024
Previous Showing 11-20 of 84 results. Next