cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 60 results. Next

A087288 a(n)=2a(n-1)+a(n-2)-2a(n-3).

Original entry on oeis.org

4, 4, 10, 16, 34, 64, 130, 256, 514, 1024, 2050, 4096, 8194, 16384, 32770, 65536, 131074, 262144, 524290, 1048576, 2097154, 4194304, 8388610, 16777216, 33554434, 67108864, 134217730, 268435456, 536870914, 1073741824, 2147483650
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 31 2003

Keywords

Comments

a(n)=(A000051(n)-A014551(n))/2.

Programs

  • Mathematica
    CoefficientList[Series[(4 - 4x - 2x^2)/(1 - 2x - x^2 + 2x^3), {x, 0, 30}], x]
  • PARI
    a(n)=2<Charles R Greathouse IV, Aug 20 2013

Formula

G.f.: (4-4x-2x^2)/(1-2x-x^2+2x^3). a(n)=2^(n+1)+1+(-1)^n.

A105578 a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = 1, a(2) = 0.

Original entry on oeis.org

1, 1, 0, -1, 0, 3, 4, -1, -8, -5, 12, 23, 0, -45, -44, 47, 136, 43, -228, -313, 144, 771, 484, -1057, -2024, 91, 4140, 3959, -4320, -12237, -3596, 20879, 28072, -13685, -69828, -42457, 97200, 182115, -12284, -376513, -351944, 401083, 1104972, 302807, -1907136, -2512749, 1301524, 6327023, 3723976
Offset: 0

Views

Author

Creighton Dement, Apr 14 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: ibaseiseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]

Crossrefs

Equals (A107920(n) + 1)/2.

Programs

Formula

a(n) - a(n+1) = A001607(n); a(n+2) - 2a(n+1) + a(n) = - A078020(n).
G.f.: -(x^2-x+1) / ((x-1)*(2*x^2-x+1)). - Colin Barker, Feb 08 2015

A201455 a(n) = 3*a(n-1) + 4*a(n-2) for n>1, a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 17, 63, 257, 1023, 4097, 16383, 65537, 262143, 1048577, 4194303, 16777217, 67108863, 268435457, 1073741823, 4294967297, 17179869183, 68719476737, 274877906943, 1099511627777, 4398046511103, 17592186044417, 70368744177663, 281474976710657
Offset: 0

Views

Author

Bruno Berselli, Jan 09 2013

Keywords

Comments

This is the Lucas sequence V(3,-4).
Inverse binomial transform of this sequence is A087451.

Crossrefs

Cf. for the same recurrence with initial values (i,i+1): A015521 (Lucas sequence U(3,-4); i=0), A122117 (i=1), A189738 (i=3).
Cf. for similar closed form: A014551 (2^n+(-1)^n), A102345 (3^n+(-1)^n), A087404 (5^n+(-1)^n).

Programs

  • Magma
    [n le 1 select n+2 else 3*Self(n)+4*Self(n-1): n in [0..25]];
    
  • Mathematica
    RecurrenceTable[{a[n] == 3 a[n - 1] + 4 a[n - 2], a[0] == 2, a[1] == 3}, a[n], {n, 25}]
  • Maxima
    a[0]:2$ a[1]:3$ a[n]:=3*a[n-1]+4*a[n-2]$ makelist(a[n], n, 0, 25);
    
  • PARI
    Vec((2-3*x)/((1+x)*(1-4*x)) + O(x^30)) \\ Michel Marcus, Jun 26 2015

Formula

G.f.: (2-3*x)/((1+x)*(1-4*x)).
a(n) = 4^n+(-1)^n.
a(n) = A086341(A047524(n)) for n>0, a(0)=2.
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 25*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
a(n) = (2/4^n) * Sum_{k = 0..n} binomial(4*n+1, 4*k). - Peter Bala, Feb 06 2019

A083332 a(n) = 10*a(n-2) - 16*a(n-4) for n > 3, a(0) = 1, a(1) = 5, a(2) = 14, a(3) = 34.

Original entry on oeis.org

1, 5, 14, 34, 124, 260, 1016, 2056, 8176, 16400, 65504, 131104, 524224, 1048640, 4194176, 8388736, 33554176, 67109120, 268434944, 536871424, 2147482624, 4294968320, 17179867136, 34359740416, 137438949376, 274877911040
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003

Keywords

Comments

a(n)/A083333(n) converges to 3.

Crossrefs

Cf. A147590, A081342 (bisections). [R. J. Mathar, Jul 13 2009]
Cf. A199710. [Bruno Berselli, Nov 11 2011]

Programs

  • Mathematica
    CoefficientList[Series[(1+5x+4x^2-16x^3)/(1-10x^2+16x^4), {x, 0, 30}], x]
  • Maxima
    (a[0] : 1, a[1] : 5, a[2] : 14, a[3] : 34, a[n] := 10*a[n - 2] - 16*a[n - 4], makelist(a[n], n, 0, 50));/* Franck Maminirina Ramaharo, Nov 12 2018 */

Formula

G.f.: (1 + 5*x + 4*x^2 - 16*x^3)/(1 - 10*x^2 + 16*x^4).
a(n) = A016116(n)*A014551(n+1). - R. J. Mathar, Jul 08 2009
From Franck Maminirina Ramaharo, Nov 12 2018: (Start)
a(n) = sqrt(2)^(3*n - 1)*(1 + sqrt(2) + (-1)^n*(sqrt(2) - 1)) + sqrt(2)^(n - 3)*(1 - sqrt(2) - (-1)^n*(sqrt(2) + 1)).
E.g.f.: (sinh(sqrt(2)*x) + 2*sinh(2*sqrt(2)*x))/sqrt(2) - cosh(sqrt(2)*x) + 2*cosh(2*sqrt(2)*x). (End)

A099430 a(n) = 2^n+(-1)^n-1.

Original entry on oeis.org

1, 0, 4, 6, 16, 30, 64, 126, 256, 510, 1024, 2046, 4096, 8190, 16384, 32766, 65536, 131070, 262144, 524286, 1048576, 2097150, 4194304, 8388606, 16777216, 33554430, 67108864, 134217726, 268435456, 536870910, 1073741824, 2147483646
Offset: 0

Views

Author

Paul Barry, Oct 15 2004

Keywords

Comments

Jacobsthal-Lucas numbers less 1.
For n >= 1, a(n) is also the number of periodic points of period n of the Period Doubling and the Thue-Morse Chain. [Natascha Neumaerker (naneumae(AT)math.uni-bielefeld.de), Apr 06 2009]

Crossrefs

Cf. A014551.

Programs

Formula

G.f.: (1-2x+3x^2)/((1-x)(1-x-2x^2)) = (1-2x+3x^2)/((1-x^2)(1-2x)).
a(n) = A014551(n)-1.
zeta(z) = (1-z)/((1+z)(1-2z)). [Natascha Neumaerker (naneumae(AT)math.uni-bielefeld.de), Apr 06 2009]
a(n) = 2*a(n-1)+a(n-2)-2*a(n-3). - Wesley Ivan Hurt, Jun 09 2023

A105577 a(n) = 2*a(n-1) - 3*a(n-2) + 2*a(n-3) with a(0) = 1, a(1) = 5, a(2) = 6.

Original entry on oeis.org

1, 5, 6, -1, -10, -5, 18, 31, -2, -61, -54, 71, 182, 43, -318, -401, 238, 1043, 570, -1513, -2650, 379, 5682, 4927, -6434, -16285, -3414, 29159, 35990, -22325, -94302, -49649, 138958, 238259, -39654, -516169, -436858, 595483, 1469202, 278239, -2660162, -3216637, 2103690, 8536967
Offset: 0

Views

Author

Creighton Dement, Apr 14 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 2lesseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]

Crossrefs

Equals (1/4) [A107920(n+4) + 2*A107920(n-1) + 3].

Programs

  • Mathematica
    LinearRecurrence[{2,-3,2},{1,5,6},50] (* Harvey P. Dale, Apr 13 2019 *)

Formula

G.f.: (1+3*x-x^2)/((1-x)*(1-x+2*x^2)). - Colin Barker, Mar 26 2012
E.g.f.: exp(x/2)*(21*exp(x/2) - 7*cos(sqrt(7)*x/2) + 15*sqrt(7)*sin(sqrt(7)*x/2))/14. - Stefano Spezia, May 22 2025

A259713 a(n) = 3*2^n - 2*(-1)^n.

Original entry on oeis.org

1, 8, 10, 26, 46, 98, 190, 386, 766, 1538, 3070, 6146, 12286, 24578, 49150, 98306, 196606, 393218, 786430, 1572866, 3145726, 6291458, 12582910, 25165826, 50331646, 100663298, 201326590, 402653186, 805306366, 1610612738, 3221225470, 6442450946, 12884901886
Offset: 0

Views

Author

Paul Curtz, Jul 03 2015

Keywords

Comments

Inverse binomial transform of 3^n, with 3 (second term) excluded.
a(n) mod 9 gives A010689.

Crossrefs

Programs

  • Magma
    [3*2^n-2*(-1)^n: n in [0..40]]; // Vincenzo Librandi, Jul 04 2015
  • Mathematica
    Table[3 2^n - 2 (-1)^n, {n, 0, 50}] (* Vincenzo Librandi, Jul 04 2015 *)
    LinearRecurrence[{1,2},{1,8},40] (* Harvey P. Dale, Aug 19 2020 *)
  • PARI
    Vec(-(7*x+1)/((x+1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Jul 03 2015
    

Formula

a(n) = a(n-1) + 2*a(n-2) for n>1, a(0)=1, a(1)=8.
a(n) = 2*a(n-1) - 6*(-1)^n for n>0, a(0)=1.
a(4n+2) = 10*A182460(n); a(2n) = A096045(n), a(2n+1) = A140788(n).
a(n) = 3*A014551(n+1) - A201630(n).
a(n+2) - a(n) = a(n) + a(n+1) = A005010(n).
G.f.: -(7*x+1) / ((x+1)*(2*x-1)). - Colin Barker, Jul 03 2015

Extensions

Typo in data fixed by Colin Barker, Jul 03 2015

A271494 Expansion of (1+16*x)/((1+4*x)*(1-8*x)).

Original entry on oeis.org

1, 20, 112, 1088, 7936, 66560, 520192, 4210688, 33488896, 268697600, 2146435072, 17184063488, 137422176256, 1099578736640, 8795824586752, 70369817919488, 562945658454016, 4503616807239680, 36028728299487232, 288230651029618688, 2305841909702066176, 18446748471756062720
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2016

Keywords

Comments

Sixth moments of the Rudin-Shapiro polynomials.

References

  • Shalosh B. Ekhad, Explicit Generating Functions, Asymptotics, and More for the First 10 Even Moments of the Rudin-Shapiro Polynomials, Preprint, 2016.
  • Doron Zeilberger, Personal Communication to N. J. A. Sloane, Apr 15 2016.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+16x)/((1+4x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[{4,32},{1,20},30] (* Harvey P. Dale, May 13 2017 *)
  • PARI
    Vec((1+16*x)/((1+4*x)*(1-8*x)) + O(x^50)) \\ Colin Barker, Apr 17 2016

Formula

From Colin Barker, Apr 17 2016: (Start)
a(n) = 2^(1+3*n)-(-4)^n.
a(n) = 4*a(n-1) + 32*a(n-2) for n>1.
(End)
a(n) = 4^n*A014551(n+1). - R. J. Mathar, Mar 08 2021

A049332 Number of conjugacy classes in Clifford group CL(n).

Original entry on oeis.org

2, 4, 5, 10, 17, 34, 65, 130, 257, 514, 1025, 2050, 4097, 8194, 16385, 32770, 65537, 131074, 262145, 524290, 1048577, 2097154, 4194305, 8388610, 16777217, 33554434, 67108865, 134217730, 268435457, 536870914, 1073741825, 2147483650
Offset: 0

Views

Author

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 4tesforseq[ (- .25'i - .25i' - .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' - .25e)*( + .5'i + .5i' + .5'ii' + .5'jk' + .5'kj' + .5e ) ], 1vesforseq = (1,1,1,1,1,1,1). (Dement)

References

  • B. Simon, Representations of Finite and Compact Groups, Amer. Math. Soc., 1996, p. 69.

Crossrefs

Cf. A101622, A014551 (first differences)

Programs

Formula

a(n+2) - A101622(n+1) = 4. - Creighton Dement, Mar 07 2005
From Colin Barker, Apr 18 2012: (Start)
a(n) = (3/2 - (-1)^n/2 + 2^n).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
G.f.: (2-5*x^2)/((1-x)*(1+x)*(1-2*x)). (End)
E.g.f.: cosh(x) + cosh(2*x) + 2*sinh(x) + sinh(2*x). - Stefano Spezia, May 27 2022
a(n) = 2*A000975(n+1) -5*A000975(n-1). - R. J. Mathar, Oct 12 2022

A099429 A Jacobsthal-Lucas convolution.

Original entry on oeis.org

0, 0, 2, 3, 12, 25, 66, 147, 344, 765, 1710, 3751, 8196, 17745, 38234, 81915, 174768, 371365, 786438, 1660239, 3495260, 7340025, 15379122, 32156323, 67108872, 139810125, 290805086, 603979767, 1252698804, 2594876065, 5368709130, 11095332171, 22906492256
Offset: 0

Views

Author

Paul Barry, Oct 15 2004

Keywords

Comments

Inverse binomial transform is (-1)^n * a(n). - Michael Somos, Jun 02 2014
If we concatenate the lexicographically ordered bit strings of length n, then a(n) is the number of times 11 appears as a substring, if overlapping substrings are not considered as being separate. - John M. Campbell, Jan 18 2019

Examples

			G.f. = 2*x^2 + 3*x^3 + 12*x^4 + 25*x^5 + 66*x^6 + 147*x^7 + 344*x^8 + ...
If we concatenate the lexicographically ordered bit strings of length 4, we obtain the expression 0000000100100011010001010110011110001001101010111100110111101111, and we see that the substring 11 appears a total of a(4) = 12 times, with overlapping substrings not being considered as being separate. - _John M. Campbell_, Jan 18 2019
		

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!( x^2*(2-x)/(1-x-2*x^2)^2 )); // G. C. Greubel, Feb 25 2019
    
  • Mathematica
    CoefficientList[Series[x^2*(2-x)/(1-x-2x^2)^2, {x, 0, 32}], x] (* Michael De Vlieger, Jan 18 2019 *)
  • PARI
    {a(n) = if( n>=0, polcoeff( x^2*(2-x)/((1+x)*(1-2*x))^2 + x*O(x^n), n), polcoeff( x*(1-2*x)/((1+x)*(2-x))^2 + x*O(x^-n), -n) )}; /* Michael Somos, Jun 02 2014 */
    
  • Sage
    (x^2*(2-x)/(1-x-2*x^2)^2).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019

Formula

G.f.: x^2*(2-x)/(1-x-2*x^2)^2. [Typo corrected by Colin Barker, Jun 16 2012]
a(n) = Sum_{k=0..n} J(n-k)*(2^(k-1) -(-1)^k +0^k/2).
a(n) = Sum_{k=0..n+1} J(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2.
a(n) = A036289(n)/6 +(-1)^n*n/3. - R. J. Mathar, Sep 21 2012
a(-n) = (-2)^(-n-1) * A193449(n) for all n in Z. - Michael Somos, Jun 02 2014
Previous Showing 21-30 of 60 results. Next