cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 102 results. Next

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A329008 a(n) = p(0,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(3) as in A327321.

Original entry on oeis.org

1, 1, 7, 5, 61, 91, 547, 205, 4921, 7381, 44287, 33215, 398581, 597871, 3587227, 672605, 32285041, 48427561, 290565367, 217924025, 2615088301, 3922632451, 23535794707, 8825923015, 211822152361, 317733228541, 1906399371247, 1429799528435, 17157594341221
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2019

Keywords

Comments

a(n) is a strong divisibility sequence; i.e., gcd(a(h),a(k)) = a(gcd(h,k)).

Examples

			See Example in A327321.
		

Crossrefs

Programs

  • Mathematica
    c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly];
    r = Sqrt[3]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]];
    Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]];  (* A327321 *)
    Table[f[x, n] /. x -> 0, {n, 1, 30}]   (* A329008 *)
    Table[f[x, n] /. x -> 1, {n, 1, 30}]   (* A329009 *)
    Table[f[x, n] /. x -> 2, {n, 1, 30}]   (* A329010 *)
    (* Peter J. C. Moses, Nov 01 2019 *)
    Numerator[CoefficientList[Normal[Series[1/((4 + x)*(4 - 3*x)), {x, 0, 30}]], x]] (* Vaclav Kotesovec, Mar 19 2022 *)

Formula

a(2*n - 1) = A015518(2*n - 1). - Vaclav Kotesovec, Mar 19 2022

A015588 Expansion of x/(1 - 10*x - 3*x^2).

Original entry on oeis.org

0, 1, 10, 103, 1060, 10909, 112270, 1155427, 11891080, 122377081, 1259444050, 12961571743, 133394049580, 1372825211029, 14128434259030, 145402818223387, 1496413485010960, 15400343304779761, 158492673502830490, 1631127764942644183, 16786755669934933300
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 10*a(n-1) + 3*a(n-2).

A092810 Binomial transform of a Jacobsthal trisection.

Original entry on oeis.org

1, 6, 54, 486, 4374, 39366, 354294, 3188646, 28697814, 258280326, 2324522934, 20920706406, 188286357654, 1694577218886, 15251194969974, 137260754729766, 1235346792567894, 11118121133111046, 100063090197999414, 900567811781994726, 8105110306037952534
Offset: 0

Views

Author

Paul Barry, Mar 10 2004

Keywords

Comments

Binomial transform of A082311.

Crossrefs

Cf. A001045.

Programs

Formula

G.f.: (1-3*x)/(1-9*x).
E.g.f.: 2*exp(9*x)/3 + 1/3.
a(n) = 2*9^n/3 + 0^n/3.
a(n) = A054878(2n+1) - A054878(2n-1) + 0^n/3 = A015518(2n+1) - A015518(2n-1) + 0^n/3.
a(n) = 2*3^(2*n-1), for n>0. - Gionata Neri, Jun 18 2015

A097137 Convolution of 3^n and floor(n/2).

Original entry on oeis.org

0, 0, 1, 4, 14, 44, 135, 408, 1228, 3688, 11069, 33212, 99642, 298932, 896803, 2690416, 8071256, 24213776, 72641337, 217924020, 653772070, 1961316220, 5883948671, 17651846024, 52955538084, 158866614264, 476599842805
Offset: 0

Views

Author

Paul Barry, Jul 29 2004

Keywords

Comments

a(n+1) gives partial sums of A033113 and second partial sums of A015518(n+1). Binomial transform of {0,0,1,1,4,4,16,16,...}.
Partial sums of floor(3^n/8) = round(3^n/8). - Mircea Merca, Dec 28 2010

Crossrefs

Column k=3 of A368296.
Cf. A033113.

Programs

  • GAP
    a:=[0,0,1,4];; for n in [5..30] do a[n]:=4*a[n-1]-2*a[n-2]-4*a[n-3] +3*a[n-4]; od; a; # G. C. Greubel, Jul 14 2019
  • Magma
    [Round((3*3^n-4*n-4)/16): n in [0..30]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    A097137 := proc(n) add( floor(3^i/8),i=0..n) ; end proc:
  • Mathematica
    CoefficientList[Series[x^2/((1-x)^2(1-3x)(1+x)),{x,0,30}],x]  (* Harvey P. Dale, Mar 11 2011 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0], Vec(x^2/((1-x)^2*(1-3*x)*(1+x)))) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    (x^2/((1-x)^2*(1-3*x)*(1+x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 14 2019
    

Formula

G.f.: x^2/((1-x)^2*(1-3*x)*(1+x)).
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) + 3*a(n-4).
a(n) = Sum_{k=0..n} floor((n-k)/2)*3^k = Sum_{k=0..n} floor(k/2)*3^(n-k).
From Mircea Merca, Dec 26 2010: (Start)
a(n) = round((3*3^n - 4*n - 4)/16) = floor((3*3^n - 4*n - 3)/16) = ceiling((3*3^n - 4*n - 5)/16) = round((3*3^n - 4*n - 3)/16).
a(n) = a(n-2) + (3^(n-1)-1)/2, n > 2. (End)
a(n) = (floor(3^(n+1)/8) - floor((n+1)/2))/2. - Seiichi Manyama, Dec 22 2023

A099173 Array, A(k,n), read by diagonals: g.f. of k-th row x/(1-2*x-(k-1)*x^2).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 5, 8, 5, 0, 1, 2, 6, 12, 16, 6, 0, 1, 2, 7, 16, 29, 32, 7, 0, 1, 2, 8, 20, 44, 70, 64, 8, 0, 1, 2, 9, 24, 61, 120, 169, 128, 9, 0, 1, 2, 10, 28, 80, 182, 328, 408, 256, 10, 0, 1, 2, 11, 32, 101, 256, 547, 896, 985, 512, 11
Offset: 0

Views

Author

Ralf Stephan, Oct 13 2004

Keywords

Examples

			Square array, A(n, k), begins as:
  0, 1, 2,  3,  4,   5,    6,    7,     8, ... A001477;
  0, 1, 2,  4,  8,  16,   32,   64,   128, ... A000079;
  0, 1, 2,  5, 12,  29,   70,  169,   408, ... A000129;
  0, 1, 2,  6, 16,  44,  120,  328,   896, ... A002605;
  0, 1, 2,  7, 20,  61,  182,  547,  1640, ... A015518;
  0, 1, 2,  8, 24,  80,  256,  832,  2688, ... A063727;
  0, 1, 2,  9, 28, 101,  342, 1189,  4088, ... A002532;
  0, 1, 2, 10, 32, 124,  440, 1624,  5888, ... A083099;
  0, 1, 2, 11, 36, 149,  550, 2143,  8136, ... A015519;
  0, 1, 2, 12, 40, 176,  672, 2752, 10880, ... A003683;
  0, 1, 2, 13, 44, 205,  806, 3457, 14168, ... A002534;
  0, 1, 2, 14, 48, 236,  952, 4264, 18048, ... A083102;
  0, 1, 2, 15, 52, 269, 1110, 5179, 22568, ... A015520;
  0, 1, 2, 16, 56, 304, 1280, 6208, 27776, ... A091914;
Antidiagonal triangle, T(n, k), begins as:
  0;
  0,  1;
  0,  1,  2;
  0,  1,  2,  3;
  0,  1,  2,  4,  4;
  0,  1,  2,  5,  8,  5;
  0,  1,  2,  6, 12, 16,   6;
  0,  1,  2,  7, 16, 29,  32,   7;
  0,  1,  2,  8, 20, 44,  70,  64,   8;
  0,  1,  2,  9, 24, 61, 120, 169, 128,   9;
  0,  1,  2, 10, 28, 80, 182, 328, 408, 256,  10;
		

Crossrefs

Rows m: A001477 (m=0), A000079 (m=1), A000129 (m=2), A002605 (m=3), A015518 (m=4), A063727 (m=5), A002532 (m=6), A083099 (m=7), A015519 (m=8), A003683 (m=9), A002534 (m=10), A083102 (m=11), A015520 (m=12), A091914 (m=13).
Columns q: A000004 (q=0), A000012 (q=1), A009056 (q=2), A008586 (q=3).
Main diagonal gives A357502.

Programs

  • Magma
    A099173:= func< n,k | (&+[n^j*Binomial(k,2*j+1): j in [0..Floor(k/2)]]) >;
    [A099173(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
    
  • Mathematica
    A[k_, n_]:= Which[k==0, n, n==0, 0, True, ((1+Sqrt[k])^n - (1-Sqrt[k])^n)/(2 Sqrt[k])]; Table[A[k-n, n]//Simplify, {k, 0, 12}, {n, 0, k}]//Flatten (* Jean-François Alcover, Jan 21 2019 *)
  • PARI
    A(k,n)=sum(i=0,n\2,k^i*binomial(n,2*i+1))
    
  • SageMath
    def A099173(n,k): return sum( n^j*binomial(k, 2*j+1) for j in range((k//2)+1) )
    flatten([[A099173(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023

Formula

A(n, k) = Sum_{i=0..floor(k/2)} n^i * C(k, 2*i+1) (array).
Recurrence: A(n, k) = 2*A(n, k-1) + (n-1)*A(n, k-2), with A(n, 0) = 0, A(n, 1) = 1.
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n, n) = A357502(n).
A(n, k) = ((1+sqrt(n))^k - (1-sqrt(n))^k)/(2*sqrt(n)). - Jean-François Alcover, Jan 21 2019

A109189 Triangle read by rows: T(n,k) is number of Grand Motzkin paths of length n having k (1,0)-steps at level zero. (A Grand Motzkin path is a path in the half-plane x>=0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).).

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 2, 4, 0, 1, 8, 4, 6, 0, 1, 16, 20, 6, 8, 0, 1, 46, 40, 36, 8, 10, 0, 1, 114, 128, 72, 56, 10, 12, 0, 1, 310, 324, 254, 112, 80, 12, 14, 0, 1, 822, 932, 654, 432, 160, 108, 14, 16, 0, 1, 2238, 2540, 1986, 1128, 670, 216, 140, 16, 18, 0, 1, 6094, 7164, 5546
Offset: 0

Views

Author

Emeric Deutsch, Jun 21 2005

Keywords

Comments

Row sums yield the central trinomial coefficients (A002426). T(n,0)=A109190(n). sum(k*T(n,k),k=0..n)=A015518(n).

Examples

			T(4,1) = 4 because we have (h)uhd, (h)dhu, uhd(h) and dhu(h), where u=(1,1), d=(1,-1), h=(1,0) and the (1,0) steps at level 0 are shown between parentheses.
Triangle begins:
1;
0,1;
2,0,1;
2,4,0,1;
8,4,6,0,1;
16,20,6,8,0,1;
		

Crossrefs

Programs

  • Maple
    M:=(1-z-sqrt(1-2*z-3*z^2))/2/z^2: G:=1/(1-t*z-2*z^2*M): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 11 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od;
    # second Maple program:
    b:= proc(x, y) option remember;
          `if`(abs(y)>x, 0, `if`(x=0, 1, expand(b(x-1, y)*
          `if`(y=0, t, 1) +b(x-1, y+1) +b(x-1, y-1))))
        end:
    T:= n-> (p-> seq(coeff(p, t, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Feb 05 2014
  • Mathematica
    nn=10;m=(1-x-(1-2x-3x^2)^(1/2))/(2x^2);CoefficientList[Series[1/(1-y x-2x^2m),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Feb 05 2014 *)

Formula

G.f.= 1/(1-tz-2z^2*M), where M=1+zM+z^2*M^2=[1-z-sqrt(1-2z-3z^2)]/(2z^2) is the g.f. of the Motzkin numbers (A001006).

A111010 Primes of the form (3^k - (-1)^k)/4.

Original entry on oeis.org

2, 7, 61, 547, 398581, 23535794707, 82064241848634269407
Offset: 1

Views

Author

Cino Hilliard, Oct 02 2005

Keywords

Comments

The next term is too large to include.
Is there an infinity of primes in this sequence?
All a(n), except a(1) = 2, are primes of the form (3^k + 1)/4. Corresponding numbers k such that (3^k + 1)/4 is prime are listed in A007658(n) = {3, 5, 7, 13, 23, 43, 281, 359, 487, 577, ...}. All such numbers k are primes. a(1) = 2 is the only prime of the form (3^k - 1)/4. - Alexander Adamchuk, Nov 19 2006

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.

Crossrefs

Programs

  • Mathematica
    Do[f=(3^n - (-1)^n)/4; If[PrimeQ[f],Print[{n,f}]],{n,1,577}] (* Alexander Adamchuk, Nov 19 2006 *)
  • PARI
    primenum(n,k,typ) = /* k=mult,typ=1 num,2 denom. ouyput prime num or denom. */ { local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v),print1(v","); ) ); print(); print(a/b+.); }

Formula

Given a(0)=1, b(0)=1, then for i=1, 2, ..., a(i)/b(i) = (a(i-1) + 2*b(i-1)) /(a(i-1) + b(i-1)).
a(n) = A015518(A007658(n-1)) for n >= 2. - Amiram Eldar, Jul 04 2024

Extensions

Edited by Alexander Adamchuk, Nov 19 2006

A114283 Sequence array for binomial transform of Jacobsthal numbers A001045(n+1).

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 18, 6, 2, 1, 54, 18, 6, 2, 1, 162, 54, 18, 6, 2, 1, 486, 162, 54, 18, 6, 2, 1, 1458, 486, 162, 54, 18, 6, 2, 1, 4374, 1458, 486, 162, 54, 18, 6, 2, 1, 13122, 4374, 1458, 486, 162, 54, 18, 6, 2, 1, 39366, 13122, 4374, 1458, 486, 162, 54, 18, 6, 2, 1
Offset: 0

Views

Author

Paul Barry, Nov 20 2005

Keywords

Comments

Sequence array for A025192. Row sums are 3^n, A000244. Diagonal sums are A015518(n+1). Inverse is A114284.

Examples

			Triangle begins
1;
2,1;
6,2,1;
18,6,2,1;
54,18,6,2,1;
162,54,18,6,2,1;
		

Programs

  • Haskell
    a114283 n k = a114283_tabl !! n !! k
    a114283_row n = a114283_tabl !! n
    a114283_tabl = iterate
       (\row -> (sum $ zipWith (+) row $ reverse row) : row) [1]
    -- Reinhard Zumkeller, Nov 27 2012

Formula

Riordan array ((1-x)/(1-3x), x).

A131049 (1/4) * (A007318^3 - A007318^(-1)).

Original entry on oeis.org

1, 2, 2, 7, 6, 3, 20, 28, 12, 4, 61, 100, 70, 20, 5, 182, 366, 300, 140, 30, 6, 547, 1274, 1281, 700, 245, 42, 7, 1640, 4376, 5096, 3416, 1400, 392, 56, 8, 4921, 14760, 19692, 15288, 7686, 2520, 588, 72, 9
Offset: 1

Views

Author

Gary W. Adamson, Jun 12 2007

Keywords

Comments

Row sums = powers of 4: (1, 4, 16, 64, ...).
Left border = A015518: (1, 2, 7, 20, 61, 182, ...).

Examples

			First few rows of the triangle:
    1;
    2,    2;
    7,    6,    3;
   20,   28,   12,   4;
   61,  100,   70,  20,   5;
  182,  366,  300, 140,  30,  6;
  547, 1274, 1281, 700, 245, 42, 7;
  ...
		

Crossrefs

Formula

(1/4) * (P^3 - 1/P), where P = Pascal's triangle, A007318. Delete right border of zeros.
Previous Showing 71-80 of 102 results. Next