cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 102 results. Next

A271116 Integers n such that round(3^n/12) is divisible by n.

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307
Offset: 1

Views

Author

Altug Alkan, Mar 31 2016

Keywords

Comments

In other words, numbers n such that A015518(n-1) is divisible by n.
This sequence generates prime numbers except 2 and 3.
The first few composite terms in this sequence are 91, 121, 671, 703, 949. Note that they are pseudoprimes to base 3.
Also, numbers k such that 3^(k-1) mod (4*k) = 1. In the first million terms only 908 terms are nonprimes. - David A. Corneth, Oct 02 2020

Examples

			5 is a term because round(3^5/12) = 20 is divisible by 5.
6 is not a term because round(3^6/12) = 61 which is not divisible by 6. - _David A. Corneth_, Oct 02 2020
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 308, Divisible[Round[3^#/12], #] &] (* Michael De Vlieger, Mar 31 2016 *)
  • PARI
    f(n) = round(3^n/12);
    for(n=1, 1e3, if(f(n) % n == 0, print1(n, ", ")));
    
  • PARI
    is(n) = lift(Mod(3, 4*n)^(n-1))==1 \\ David A. Corneth, Oct 02 2020

A360036 Expansion of e.g.f. x*exp(x)*(sinh(x))^2.

Original entry on oeis.org

0, 0, 0, 6, 24, 100, 360, 1274, 4368, 14760, 49200, 162382, 531432, 1727180, 5580120, 17936130, 57395616, 182948560, 581130720, 1840247318, 5811307320, 18305618100, 57531942600, 180441092746, 564859072944, 1765184603000, 5507375961360, 17157594341214, 53379182394888
Offset: 0

Views

Author

Enrique Navarrete, Jan 22 2023

Keywords

Comments

a(n) is the number of ordered set partitions of an n-set into 3 sets such that the first and second sets have an odd number of elements and an element is selected from the third.

Examples

			The first 4 cases are shown below for a(4)=24 (where the element selected from the third set is in parenthesis):
{1}, {2}, {(3), 4}
{1}, {2}, {3, (4)}
{2}, {1}, {(3), 4}
{2}, {1}, {3, (4)}.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[x Exp[x]Sinh[x]^2,{x,0,nn}],x] Range[0,nn]!] (* or *) LinearRecurrence[{6,-7,-12,17,6,-9},{0,0,0,6,24,100},30] (* Harvey P. Dale, Aug 17 2025 *)

Formula

a(n) = n*A081251(n-2) for n >= 3.
a(n) = n*(3^(n-1) + (-1)^(n-1) - 2)/4.
G.f.: 2*x^3*(3 - 6*x - x^2)/((1 - x)^2*(1 + x)^2*(1 - 3*x)^2). - Stefano Spezia, Jan 23 2023

A015609 a(n) = 11*a(n-1) + 12*a(n-2).

Original entry on oeis.org

0, 1, 11, 133, 1595, 19141, 229691, 2756293, 33075515, 396906181, 4762874171, 57154490053, 685853880635, 8230246567621, 98762958811451, 1185155505737413, 14221866068848955, 170662392826187461
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_13. Example: a(2)=11 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKLM are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB, ALB and AMB. - Emeric Deutsch, Apr 01 2004

Crossrefs

Programs

  • Magma
    [(1/13)*(12^n-(-1)^n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
    
  • Mathematica
    CoefficientList[Series[x/(1-11*x-12*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{11,12}, {0,1}, 30] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-11*x-12*x^2))) \\ G. C. Greubel, Dec 30 2017
  • Sage
    [lucas_number1(n,11,-12) for n in range(0, 18)] # Zerinvary Lajos, Apr 27 2009
    
  • Sage
    [abs(gaussian_binomial(n,1,-12)) for n in range(0,18)] # Zerinvary Lajos, May 28 2009
    

Formula

From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 12^(n-1) - a(n-1).
G.f.: x/(1 - 11*x - 12*x^2). (End)
E.g.f.: exp(-x)*(exp(13*x) - 1)/13. - Stefano Spezia, Mar 11 2020

A053535 Expansion of 1/((1+3*x)*(1-9*x)).

Original entry on oeis.org

1, 6, 63, 540, 4941, 44226, 398763, 3586680, 32286681, 290560446, 2615103063, 23535750420, 211822285221, 1906398972666, 17157595536963, 154418345483760, 1389765152400561, 12507886242464886, 112570976569604463
Offset: 0

Views

Author

Barry E. Williams, Jan 15 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A015518.

Programs

  • GAP
    a:=[1,6];; for n in [3..30] do a[n]:=6*a[n-1]+27*a[n-2]; od; a; # G. C. Greubel, May 16 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 1/((1+3*x)*(1-9*x)) )); // G. C. Greubel, May 16 2019
    
  • Mathematica
    LinearRecurrence[{6,27}, {1,6}, 20] (* G. C. Greubel, May 16 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec(1/((1+3*x)*(1-9*x))) \\ G. C. Greubel, May 16 2019
    
  • Sage
    (1/((1+3*x)*(1-9*x))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
    

Formula

a(n) = (3^n/4)*(3^(n+1) + (-1)^n).
a(n) = 6*a(n-1) + 27*a(n-2), with a(0)=1, a(1)=6.
E.g.f.: (3*exp(9*x) + exp(-3*x))/4. - G. C. Greubel, May 16 2019

A053536 Expansion of 1/((1+4*x)*(1-12*x)).

Original entry on oeis.org

1, 8, 112, 1280, 15616, 186368, 2240512, 26869760, 322502656, 3869769728, 46438285312, 557255229440, 6687079530496, 80244887257088, 962938915520512, 11555265912504320, 138663195245019136, 1663958325760360448, 19967499977843802112, 239609999459247718400
Offset: 0

Views

Author

Barry E. Williams, Jan 15 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A015518.

Programs

  • GAP
    a:=[1,8];; for n in [3..30] do a[n]:=8*a[n-1]+48*a[n-2]; od; a; # G. C. Greubel, May 16 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1+4*x)*(1-12*x)) )); // G. C. Greubel, May 16 2019
    
  • Mathematica
    LinearRecurrence[{8,48}, {1,8}, 30] (* G. C. Greubel, May 16 2019 *)
  • PARI
    Vec(1/((1+4*x)*(1-12*x)) + O(x^30)) \\ Michel Marcus, Dec 03 2014
    
  • Sage
    (1/((1+4*x)*(1-12*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
    

Formula

a(n) = (4^n/4)*(3^(n+1) + (-1)^n).
a(n) = 8*a(n-1) + 48*a(n-2), with a(0)=1, a(1)=8.
E.g.f.: (3*exp(12*x) + exp(-4*x))/4. - G. C. Greubel, May 16 2019
a(n) = 2^n*A053524(n+1). - R. J. Mathar, Mar 08 2021

Extensions

Terms a(12) onward added by G. C. Greubel, May 16 2019

A053537 Expansion of 1/((1+5*x)*(1-15*x)).

Original entry on oeis.org

1, 10, 175, 2500, 38125, 568750, 8546875, 128125000, 1922265625, 28832031250, 432490234375, 6487304687500, 97309814453125, 1459645996093750, 21894696044921875, 328420410156250000, 4926306304931640625, 73894593811035156250, 1108418910980224609375
Offset: 0

Views

Author

Barry E. Williams, Jan 15 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A015518.

Programs

  • GAP
    a:=[1,10];; for n in [3..30] do a[n]:=10*a[n-1]+75*a[n-2]; od; a; # G. C. Greubel, May 16 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1+5*x)*(1-15*x)) )); // G. C. Greubel, May 16 2019
    
  • Mathematica
    LinearRecurrence[{10, 75}, {1, 10}, 30] (* G. C. Greubel, May 16 2019 *)
    CoefficientList[Series[1/((1+5x)(1-15x)),{x,0,20}],x] (* Harvey P. Dale, Jun 15 2022 *)
  • PARI
    Vec(1/((1+5*x)*(1-15*x)) + O(x^30)) \\ Michel Marcus, Dec 03 2014
    
  • Sage
    (1/((1+5*x)*(1-15*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
    

Formula

a(n) = (5^n/4)*(3^(n+1) + (-1)^n).
a(n) = 10*a(n-1) + 75*a(n-2), with a(0)=1, a(1)=10.
E.g.f.: (3*exp(15*x) + exp(-5*x))/4. - G. C. Greubel, May 16 2019

Extensions

Terms a(11) onward added by G. C. Greubel, May 16 2019

A109447 Binomial coefficients C(n,k) with n-k odd, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The same as A119900 without 0's. A reflected version of A034867 or A202064. - Alois P. Heinz, Feb 07 2014
From Vladimir Shevelev, Feb 07 2014: (Start)
Also table of coefficients of polynomials P_1(x)=1, P_2(x)=2, for n>=2, P_(n+1)(x) = 2*P_n(x)+(x-1)* P_(n-1)(x). The polynomials P_n(x)/2^(n-1) are connected with sequences A000045 (x=5), A001045 (x=9), A006130 (x=13), A006131 (x=17), A015440 (x=21), A015441 (x=25), A015442 (x=29), A015443 (x=33), A015445 (x=37), A015446 (x=41), A015447 (x=45), A053404 (x=49); also the polynomials P_n(x) are connected with sequences A000129, A002605, A015518, A063727, A085449, A002532, A083099, A015519, A003683, A002534, A083102, A015520. (End)

Examples

			Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1,    3;
4,    4;
1,   10,  5;
6,   20,  6;
1,   21,  35,   7;
8,   56,  56,   8;
1,   36, 126,  84,  9;
10, 120, 252, 120, 10;
		

Crossrefs

Cf. A109446.

Programs

  • Maple
    T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
    seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 30 2005
Corrected offset by Alois P. Heinz, Feb 07 2014

A124137 A signed aerated and skewed version of A038137.

Original entry on oeis.org

1, 0, 1, -1, 0, 2, 0, -2, 0, 3, 1, 0, -5, 0, 5, 0, 3, 0, -10, 0, 8, -1, 0, 9, 0, -20, 0, 13, 0, -4, 0, 22, 0, -38, 0, 21, 1, 0, -14, 0, 51, 0, -71, 0, 34, 0, 5, 0, -40, 0, 111, 0, -130, 0, 55, -1, 0, 20, 0, -105, 0, 233, 0, -235, 0, 89
Offset: 0

Views

Author

Philippe Deléham, Nov 30 2006

Keywords

Examples

			Triangle begins:
1;
0, 1;
-1, 0, 2;
0, -2, 0, 3;
1, 0, -5, 0, 5;
0, 3, 0, -10, 0, 8;
-1, 0, 9, 0, -20, 0, 13;
0, -4, 0, 22, 0, -38, 0, 21;
1, 0, -14, 0, 51, 0, -71, 0, 34;
0, 5, 0, -40, 0, 111, 0, -130, 0, 55;
		

Crossrefs

Programs

  • Mathematica
    T[0, 0]:= 1; T[n_, n_]:= Fibonacci[n + 1]; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n - 1, k - 1] + T[n - 2, k - 2] - T[n - 2, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 27 2018 *)
  • PARI
    {T(n,k) = if(n==0 && k==0, 1, if(k==n, fibonacci(n+1), if(k<0 || nG. C. Greubel, May 27 2018

Formula

T(n,k) = T(n-1,k-1) + T(n-2,k-2) - T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or if nA000045(n+1).
Sum_{0<=k<=n} x^k*T(n,k)= A014983(n+1), A033999(n), A056594(n), A000012(n), A015518(n+1), A015525(n+1) for x=-2, -1, 0, 1, 2, 3 respectively.

Extensions

Corrected and extended by Philippe Deléham, Apr 05 2012

A160444 Expansion of g.f.: x^2*(1 + x - x^2)/(1 - 2*x^2 - 2*x^4).

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 6, 10, 16, 28, 44, 76, 120, 208, 328, 568, 896, 1552, 2448, 4240, 6688, 11584, 18272, 31648, 49920, 86464, 136384, 236224, 372608, 645376, 1017984, 1763200, 2781184, 4817152, 7598336, 13160704, 20759040, 35955712, 56714752
Offset: 1

Views

Author

Willibald Limbrunner (w.limbrunner(AT)gmx.de), May 14 2009

Keywords

Comments

This sequence is the case k=3 of a family of sequences with recurrences a(2*n+1) = a(2*n) + a(2*n-1), a(2*n+2) = k*a(2*n-1) + a(2*n), a(1)=0, a(2)=1. Values of k, for k >= 0, are given by A057979 (k=0), A158780 (k=1), A002965 (k=2), this sequence (k=3). See "Family of sequences for k" link for other connected sequences.
It seems that the ratio of two successive numbers with even, or two successive numbers with odd, indices approaches sqrt(k) for these sequences as n-> infinity.
This algorithm can be found in a historical figure named "Villardsche Figur" of the 13th century. There you can see a geometrical interpretation.

Crossrefs

Programs

  • Magma
    I:=[0,1,1,1]; [n le 4 select I[n] else 2*(Self(n-2) +Self(n-4)): n in [1..40]]; // G. C. Greubel, Feb 18 2023
    
  • Mathematica
    LinearRecurrence[{0,2,0,2}, {0,1,1,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A160444
        if (n<5): return ((n+1)//3)
        else: return 2*(a(n-2) + a(n-4))
    [a(n) for n in range(1, 41)] # G. C. Greubel, Feb 18 2023

Formula

a(n) = 2*a(n-2) + 2*a(n-4).
a(2*n+1) = A002605(n).
a(2*n) = A026150(n-1).

Extensions

Edited by R. J. Mathar, May 14 2009

A226493 Closed walks of length n in K_4 graph.

Original entry on oeis.org

0, 12, 24, 84, 240, 732, 2184, 6564, 19680, 59052, 177144, 531444, 1594320, 4782972, 14348904, 43046724, 129140160, 387420492, 1162261464, 3486784404, 10460353200, 31381059612, 94143178824, 282429536484, 847288609440, 2541865828332, 7625597484984, 22876792454964
Offset: 1

Views

Author

Gustavo Gordillo, Jun 09 2013

Keywords

Comments

Essentially the same as A218034.

References

  • Mike Krebs and Tony Shaheen, Expander Families and Cayley Graphs, Oxford University Press, Inc. 2011

Crossrefs

Column k=4 of A106512.
Cf. A218034.

Programs

  • Mathematica
    Table[3 (-1)^k + 3^k, {k, 30}]
  • PARI
    a(n) = { 3*(-1)^n + 3^n } \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = 3*(-1)^n + 3^n = 12*A015518(n-1).
G.f.: 12*x^2 / ( (1+x)*(1-3*x) ). - R. J. Mathar, Jun 29 2013
Previous Showing 81-90 of 102 results. Next