A271116
Integers n such that round(3^n/12) is divisible by n.
Original entry on oeis.org
1, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307
Offset: 1
5 is a term because round(3^5/12) = 20 is divisible by 5.
6 is not a term because round(3^6/12) = 61 which is not divisible by 6. - _David A. Corneth_, Oct 02 2020
-
Select[Range@ 308, Divisible[Round[3^#/12], #] &] (* Michael De Vlieger, Mar 31 2016 *)
-
f(n) = round(3^n/12);
for(n=1, 1e3, if(f(n) % n == 0, print1(n, ", ")));
-
is(n) = lift(Mod(3, 4*n)^(n-1))==1 \\ David A. Corneth, Oct 02 2020
A360036
Expansion of e.g.f. x*exp(x)*(sinh(x))^2.
Original entry on oeis.org
0, 0, 0, 6, 24, 100, 360, 1274, 4368, 14760, 49200, 162382, 531432, 1727180, 5580120, 17936130, 57395616, 182948560, 581130720, 1840247318, 5811307320, 18305618100, 57531942600, 180441092746, 564859072944, 1765184603000, 5507375961360, 17157594341214, 53379182394888
Offset: 0
The first 4 cases are shown below for a(4)=24 (where the element selected from the third set is in parenthesis):
{1}, {2}, {(3), 4}
{1}, {2}, {3, (4)}
{2}, {1}, {(3), 4}
{2}, {1}, {3, (4)}.
-
With[{nn=30},CoefficientList[Series[x Exp[x]Sinh[x]^2,{x,0,nn}],x] Range[0,nn]!] (* or *) LinearRecurrence[{6,-7,-12,17,6,-9},{0,0,0,6,24,100},30] (* Harvey P. Dale, Aug 17 2025 *)
A015609
a(n) = 11*a(n-1) + 12*a(n-2).
Original entry on oeis.org
0, 1, 11, 133, 1595, 19141, 229691, 2756293, 33075515, 396906181, 4762874171, 57154490053, 685853880635, 8230246567621, 98762958811451, 1185155505737413, 14221866068848955, 170662392826187461
Offset: 0
Cf.
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A109501,
A015552,
A093134,
A015565,
A015577,
A015585,
A015592. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[(1/13)*(12^n-(-1)^n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
-
CoefficientList[Series[x/(1-11*x-12*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{11,12}, {0,1}, 30] (* G. C. Greubel, Dec 30 2017 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-11*x-12*x^2))) \\ G. C. Greubel, Dec 30 2017
-
[lucas_number1(n,11,-12) for n in range(0, 18)] # Zerinvary Lajos, Apr 27 2009
-
[abs(gaussian_binomial(n,1,-12)) for n in range(0,18)] # Zerinvary Lajos, May 28 2009
A053535
Expansion of 1/((1+3*x)*(1-9*x)).
Original entry on oeis.org
1, 6, 63, 540, 4941, 44226, 398763, 3586680, 32286681, 290560446, 2615103063, 23535750420, 211822285221, 1906398972666, 17157595536963, 154418345483760, 1389765152400561, 12507886242464886, 112570976569604463
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
a:=[1,6];; for n in [3..30] do a[n]:=6*a[n-1]+27*a[n-2]; od; a; # G. C. Greubel, May 16 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 1/((1+3*x)*(1-9*x)) )); // G. C. Greubel, May 16 2019
-
LinearRecurrence[{6,27}, {1,6}, 20] (* G. C. Greubel, May 16 2019 *)
-
my(x='x+O('x^20)); Vec(1/((1+3*x)*(1-9*x))) \\ G. C. Greubel, May 16 2019
-
(1/((1+3*x)*(1-9*x))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
A053536
Expansion of 1/((1+4*x)*(1-12*x)).
Original entry on oeis.org
1, 8, 112, 1280, 15616, 186368, 2240512, 26869760, 322502656, 3869769728, 46438285312, 557255229440, 6687079530496, 80244887257088, 962938915520512, 11555265912504320, 138663195245019136, 1663958325760360448, 19967499977843802112, 239609999459247718400
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
a:=[1,8];; for n in [3..30] do a[n]:=8*a[n-1]+48*a[n-2]; od; a; # G. C. Greubel, May 16 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1+4*x)*(1-12*x)) )); // G. C. Greubel, May 16 2019
-
LinearRecurrence[{8,48}, {1,8}, 30] (* G. C. Greubel, May 16 2019 *)
-
Vec(1/((1+4*x)*(1-12*x)) + O(x^30)) \\ Michel Marcus, Dec 03 2014
-
(1/((1+4*x)*(1-12*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
A053537
Expansion of 1/((1+5*x)*(1-15*x)).
Original entry on oeis.org
1, 10, 175, 2500, 38125, 568750, 8546875, 128125000, 1922265625, 28832031250, 432490234375, 6487304687500, 97309814453125, 1459645996093750, 21894696044921875, 328420410156250000, 4926306304931640625, 73894593811035156250, 1108418910980224609375
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
a:=[1,10];; for n in [3..30] do a[n]:=10*a[n-1]+75*a[n-2]; od; a; # G. C. Greubel, May 16 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1+5*x)*(1-15*x)) )); // G. C. Greubel, May 16 2019
-
LinearRecurrence[{10, 75}, {1, 10}, 30] (* G. C. Greubel, May 16 2019 *)
CoefficientList[Series[1/((1+5x)(1-15x)),{x,0,20}],x] (* Harvey P. Dale, Jun 15 2022 *)
-
Vec(1/((1+5*x)*(1-15*x)) + O(x^30)) \\ Michel Marcus, Dec 03 2014
-
(1/((1+5*x)*(1-15*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
A109447
Binomial coefficients C(n,k) with n-k odd, read by rows.
Original entry on oeis.org
1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1
Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1, 3;
4, 4;
1, 10, 5;
6, 20, 6;
1, 21, 35, 7;
8, 56, 56, 8;
1, 36, 126, 84, 9;
10, 120, 252, 120, 10;
-
T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20); # Alois P. Heinz, Feb 07 2014
-
Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)
A124137
A signed aerated and skewed version of A038137.
Original entry on oeis.org
1, 0, 1, -1, 0, 2, 0, -2, 0, 3, 1, 0, -5, 0, 5, 0, 3, 0, -10, 0, 8, -1, 0, 9, 0, -20, 0, 13, 0, -4, 0, 22, 0, -38, 0, 21, 1, 0, -14, 0, 51, 0, -71, 0, 34, 0, 5, 0, -40, 0, 111, 0, -130, 0, 55, -1, 0, 20, 0, -105, 0, 233, 0, -235, 0, 89
Offset: 0
Triangle begins:
1;
0, 1;
-1, 0, 2;
0, -2, 0, 3;
1, 0, -5, 0, 5;
0, 3, 0, -10, 0, 8;
-1, 0, 9, 0, -20, 0, 13;
0, -4, 0, 22, 0, -38, 0, 21;
1, 0, -14, 0, 51, 0, -71, 0, 34;
0, 5, 0, -40, 0, 111, 0, -130, 0, 55;
-
T[0, 0]:= 1; T[n_, n_]:= Fibonacci[n + 1]; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n - 1, k - 1] + T[n - 2, k - 2] - T[n - 2, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 27 2018 *)
-
{T(n,k) = if(n==0 && k==0, 1, if(k==n, fibonacci(n+1), if(k<0 || nG. C. Greubel, May 27 2018
A160444
Expansion of g.f.: x^2*(1 + x - x^2)/(1 - 2*x^2 - 2*x^4).
Original entry on oeis.org
0, 1, 1, 1, 2, 4, 6, 10, 16, 28, 44, 76, 120, 208, 328, 568, 896, 1552, 2448, 4240, 6688, 11584, 18272, 31648, 49920, 86464, 136384, 236224, 372608, 645376, 1017984, 1763200, 2781184, 4817152, 7598336, 13160704, 20759040, 35955712, 56714752
Offset: 1
Willibald Limbrunner (w.limbrunner(AT)gmx.de), May 14 2009
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- W. Beinert, Villardscher Teilungskanon, Lexikon der Typographie
- W. Limbrunner, Das Quadrat, ein Wunder der Geometrie. (in German)
- Willibald Limbrunner, Family of sequences for k
- M-T. Zenner, Villard de Honnecourt and Euclidean Geoometry, Nexus Network Journal 4 (2002) 65-78.
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,2).
-
I:=[0,1,1,1]; [n le 4 select I[n] else 2*(Self(n-2) +Self(n-4)): n in [1..40]]; // G. C. Greubel, Feb 18 2023
-
LinearRecurrence[{0,2,0,2}, {0,1,1,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
-
@CachedFunction
def a(n): # a = A160444
if (n<5): return ((n+1)//3)
else: return 2*(a(n-2) + a(n-4))
[a(n) for n in range(1, 41)] # G. C. Greubel, Feb 18 2023
A226493
Closed walks of length n in K_4 graph.
Original entry on oeis.org
0, 12, 24, 84, 240, 732, 2184, 6564, 19680, 59052, 177144, 531444, 1594320, 4782972, 14348904, 43046724, 129140160, 387420492, 1162261464, 3486784404, 10460353200, 31381059612, 94143178824, 282429536484, 847288609440, 2541865828332, 7625597484984, 22876792454964
Offset: 1
- Mike Krebs and Tony Shaheen, Expander Families and Cayley Graphs, Oxford University Press, Inc. 2011
- K. Böhmová, C. Dalfó, and C. Huemer, On cyclic Kautz digraphs, Preprint 2016.
- Cristina Dalfó, From subKautz digraphs to cyclic Kautz digraphs, arXiv:1709.01882 [math.CO], 2017.
- C. Dalfó, The spectra of subKautz and cyclic Kautz digraphs, Linear Algebra and its Applications, 531 (2017), p. 210-219.
- Carlos I. Perez-Sanchez, The Spectral Action on quivers, arXiv:2401.03705 [math.RT], 2024.
- Index entries for linear recurrences with constant coefficients, signature (2,3).
-
Table[3 (-1)^k + 3^k, {k, 30}]
-
a(n) = { 3*(-1)^n + 3^n } \\ Andrew Howroyd, Sep 11 2019
Comments