A033115
Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
Original entry on oeis.org
1, 5, 26, 130, 651, 3255, 16276, 81380, 406901, 2034505, 10172526, 50862630, 254313151, 1271565755, 6357828776, 31789143880, 158945719401, 794728597005, 3973642985026, 19868214925130, 99341074625651, 496705373128255
Offset: 1
-
[Round((5*5^n-3)/24): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
-
seq(1/3*floor(5^(n+1)/8),n=1..32); # Mircea Merca, Dec 26 2010
-
Table[FromDigits[PadRight[{},n,{1,0}],5],{n,30}] (* or *) LinearRecurrence[ {5,1,-5},{1,5,26},30] (* Harvey P. Dale, Jan 28 2017 *)
A213128
Polylogarithm li(-n,-1/5) multiplied by (6^(n+1))/5.
Original entry on oeis.org
1, -1, -4, -6, 96, 1104, 2016, -112176, -1718784, -642816, 437031936, 7656021504, -24274059264, -3939918299136, -72733516959744, 699443277686784, 67781787782086656, 1236409075147014144, -25430445045847425024
Offset: 0
polylog(-5,-1/5)*6^6/5 = 1104.
-
seq(add((-1)^(n-k)*combinat[eulerian1](n,k)*5^k, k=0..n),n=0..18); # Peter Luschny, Apr 21 2013
-
Table[If[n == 0, 1, PolyLog[-n, -1/5] 6^(n+1)/5], {n, 0, 18}] (* Jean-François Alcover, Jun 29 2019 *)
-
/*See A212846; run limnpq(nmax,1,5) */
-
x='x+O('x^66); Vec(serlaplace( 6/(5+exp(6*x)) )) \\ Joerg Arndt, Apr 21 2013
-
a(n) = sum(k=0, n, k!*(-1)^k*6^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022
A015592
a(n) = 10*a(n-1) + 11*a(n-2).
Original entry on oeis.org
0, 1, 10, 111, 1220, 13421, 147630, 1623931, 17863240, 196495641, 2161452050, 23775972551, 261535698060, 2876892678661, 31645819465270, 348104014117971, 3829144155297680, 42120585708274481, 463326442791019290, 5096590870701212191, 56062499577713334100
Offset: 0
Cf.
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A109501,
A015552,
A093134,
A015565,
A015577,
A015585. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[-(1/12)*(-1)^n+(1/12)*11^n: n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
-
k=0;lst={k};Do[k=11^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
-
[lucas_number1(n,10,-11) for n in range(0, 18)] # Zerinvary Lajos, Apr 26 2009
A083425
a(n) = (5*5^n + (-1)^n)/6.
Original entry on oeis.org
1, 4, 21, 104, 521, 2604, 13021, 65104, 325521, 1627604, 8138021, 40690104, 203450521, 1017252604, 5086263021, 25431315104, 127156575521, 635782877604, 3178914388021, 15894571940104, 79472859700521, 397364298502604, 1986821492513021, 9934107462565104
Offset: 0
-
List([0..25],n->(5*5^n+(-1)^n)/6); # Muniru A Asiru, Sep 21 2018
-
[n le 2 select n^2 else 4*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 23 2012
-
seq(coeff(series(factorial(n)*(5*exp(5*x)+exp(-x))/6,x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Sep 21 2018
-
LinearRecurrence[{4,5},{1,4},40] (* Vincenzo Librandi, Jun 23 2012 *)
-
a(n)=(5*5^n+(-1)^n)/6 \\ Charles R Greathouse IV, Oct 07 2015
A189800
a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0
Sequences of the form a(n) = c*a(n-1) + d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
LinearRecurrence[{6, 8}, {0, 1}, 50]
CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
-
a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A015541
Expansion of x/(1 - 5*x - 7*x^2).
Original entry on oeis.org
0, 1, 5, 32, 195, 1199, 7360, 45193, 277485, 1703776, 10461275, 64232807, 394392960, 2421594449, 14868722965, 91294775968, 560554940595, 3441838134751, 21133075257920, 129758243232857, 796722742969725, 4891921417478624, 30036666288181195
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015443,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226.
-
[n le 2 select n-1 else 5*Self(n-1) + 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
-
Join[{a=0,b=1},Table[c=5*b+7*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{5, 7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-5*x-7*x^2))) \\ G. C. Greubel, Jan 24 2018
-
[lucas_number1(n,5,-7) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A015544
Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 5, 33, 205, 1289, 8085, 50737, 318365, 1997721, 12535525, 78659393, 493581165, 3097180969, 19434554165, 121950218577, 765227526205, 4801739379641, 30130517107845, 189066500576353, 1186376639744525, 7444415203333449, 46713089134623445
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015441,
A015443,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226,
A015555 (binomial transform).
-
[n le 2 select n-1 else 5*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
-
a[n_]:=(MatrixPower[{{1,2},{1,-6}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{5, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
-
A015544(n)=imag((2+quadgen(57))^n) \\ M. F. Hasler, Mar 06 2009
-
x='x+O('x^30); concat([0], Vec(x/(1 - 5*x - 8*x^2))) \\ G. C. Greubel, Jan 01 2018
-
[lucas_number1(n,5,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A179897
a(n) = (n^(2*n+1) + 1) / (n+1).
Original entry on oeis.org
1, 1, 11, 547, 52429, 8138021, 1865813431, 593445188743, 250199979298361, 135085171767299209, 90909090909090909091, 74619186937936447687211, 73381705110822317661638341, 85180949465178001182799643437, 115244915978498073437814463065839, 179766618030828831251710653305053711
Offset: 0
Martin Saturka (martin(AT)saturka.net), Jul 31 2010
For n = 2, a(2) = 11 which is the arithmetic mean of {1/2, 1/2, 2^5} = 33 / 3 = 11. The geometric mean is 8^(1/3) = 2, i.e. both are integral.
-
a(n) = (n^(2*n + 1) + 1)/(n + 1) \\ Andrew Howroyd, May 03 2023
-
[(n**(2*n+1)+1)//(n+1) for n in range(1,11)]
Edited, a(0)=1 prepended and more terms from
Andrew Howroyd, May 03 2023
A015609
a(n) = 11*a(n-1) + 12*a(n-2).
Original entry on oeis.org
0, 1, 11, 133, 1595, 19141, 229691, 2756293, 33075515, 396906181, 4762874171, 57154490053, 685853880635, 8230246567621, 98762958811451, 1185155505737413, 14221866068848955, 170662392826187461
Offset: 0
Cf.
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A109501,
A015552,
A093134,
A015565,
A015577,
A015585,
A015592. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[(1/13)*(12^n-(-1)^n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
-
CoefficientList[Series[x/(1-11*x-12*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{11,12}, {0,1}, 30] (* G. C. Greubel, Dec 30 2017 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-11*x-12*x^2))) \\ G. C. Greubel, Dec 30 2017
-
[lucas_number1(n,11,-12) for n in range(0, 18)] # Zerinvary Lajos, Apr 27 2009
-
[abs(gaussian_binomial(n,1,-12)) for n in range(0,18)] # Zerinvary Lajos, May 28 2009
A097139
Convolution of 5^n and floor(n/2).
Original entry on oeis.org
0, 0, 1, 6, 32, 162, 813, 4068, 20344, 101724, 508625, 2543130, 12715656, 63578286, 317891437, 1589457192, 7947285968, 39736429848, 198682149249, 993410746254, 4967053731280, 24835268656410, 124176343282061, 620881716410316
Offset: 0
-
[5^(n+1)/96 -n/8 -3/32 +(-1)^n/24: n in [0..30]]; // Vincenzo Librandi, Jun 25 2011
-
A097139 := proc(n) 5^(n+1)/96 -n/8 -3/32 +(-1)^n/24 ; end proc: # R. J. Mathar, Jan 08 2011
-
f[n_] := Floor[5^n/6]/4; Accumulate@ Array[f, 24, 0]
a[n_] := a[n] = 6 a[n - 1] - 4 a[n - 2] - 6 a[n - 3] + 5 a[n - 4]; a[0] = a[1] = 0; a[2] = 1; a[3] = 6; Array[a, 24, 0]
CoefficientList[ Series[x^2/((1 - x) (1 - 5 x) (1 - x^2)), {x, 0, 23}], x] (* Robert G. Wilson v, Jan 02 2011 *)
LinearRecurrence[{6,-4,-6,5},{0,0,1,6},30] (* Harvey P. Dale, Mar 16 2019 *)
Comments