cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 99 results. Next

A255408 Permutation of natural numbers: a(n) = A083221(A255128(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 25, 20, 21, 22, 19, 24, 23, 26, 27, 28, 29, 30, 49, 32, 33, 34, 35, 36, 31, 38, 39, 40, 37, 42, 41, 44, 45, 46, 43, 48, 55, 50, 51, 52, 47, 54, 121, 56, 57, 58, 77, 60, 53, 62, 63, 64, 65, 66, 59, 68, 69, 70, 61, 72, 169, 74, 75, 76, 67, 78, 85, 80, 81, 82, 71, 84, 91, 86, 87
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2015

Keywords

Comments

a(n) tells which number in array A083221 (the sieve of Eratosthenes) is at the same position where n is in Ludic array A255127. As both arrays have A005843 (even numbers) and A016945 as their two topmost rows, both sequences are among the fixed points of this permutation.
Equally: a(n) tells which number in array A083140 is at the same position where n is in the array A255129, as they are the transposes of above two arrays.

Examples

			A255127(3,2) = 19 and A083221(3,2) = 25, thus a(19) = 25.
A255127(8,1) = 23 and A083221(8,1) = 19, thus a(23) = 19.
A255127(9,1) = 25 and A083221(9,1) = 23, thus a(25) = 23.
		

Crossrefs

Inverse: A255407.
Similar permutations: A249817.

Programs

Formula

a(n) = A083221(A255128(n)).
Other identities. For all n >= 1:
a(2n) = 2n. [Fixes even numbers.]
a(3n) = 3n. [Fixes multiples of three.]
a(A003309(n)) = A008578(n). [Maps Ludic numbers to noncomposites.]

A069131 Centered 18-gonal numbers.

Original entry on oeis.org

1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, 8929, 9505, 10099, 10711, 11341, 11989, 12655, 13339, 14041, 14761, 15499, 16255, 17029, 17821
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 18, 18, 0, 0, 0, ...]. Example: a(3) = 55 = (1, 2, 1) dot (1, 18, 18) = (1 + 36 + 18). - Gary W. Adamson, Aug 24 2010
Narayana transform (A001263) of [1, 18, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
From Lamine Ngom, Aug 19 2021: (Start)
Sequence is a spoke of the hexagonal spiral built from the terms of A016777 (see illustration in links section).
a(n) is a bisection of A195042.
a(n) is a trisection of A028387.
a(n) + 1 is promic (A002378).
a(n) + 2 is a trisection of A002061.
a(n) + 9 is the arithmetic mean of its neighbors.
4*a(n) + 5 is a square: A016945(n)^2. (End)

Examples

			a(5) = 181 because 9*5^2 - 9*5 + 1 = 225 - 45 + 1 = 181.
		

Crossrefs

Programs

Formula

a(n) = 9*n^2 - 9*n + 1.
a(n) = 18*n + a(n-1) - 18 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: ( x*(1+16*x+x^2) ) / ( (1-x)^3 ). - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=19, a(3)=55. - Harvey P. Dale, Jan 20 2014
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5)*Pi/6)/(3*sqrt(5)).
Sum_{n>=1} a(n)/n! = 10*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 10/e - 1. (End)
From Lamine Ngom, Aug 19 2021: (Start)
a(n) = 18*A000217(n) + 1 = 9*A002378(n) + 1.
a(n) = 3*A003215(n) - 2.
a(n) = A247792(n) - 9*n.
a(n) = A082040(n) + A304163(n) - a(n-1) = A016778(n) + A016790(n) - a(n-1), n > 0.
a(n) + a(n+1) = 2*A247792(n) = A010008(n), n > 0.
a(n+1) - a(n) = 18*n = A008600(n). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n)= A000290(n) + A139278(n-1)
a(n) = A069129(n) + A002378(n-1)
a(n) = A062786(n) + 8*A000217(n-1)
a(n) = A062786(n) + A033996(n-1)
a(n) = A060544(n) + 9*A000217(n-1)
a(n) = A060544(n) + A027468(n-1)
a(n) = A016754(n-1) + 10*A000217(n-1)
a(n) = A016754(n-1) + A124080
a(n) = A069099(n) + 11*A000217(n-1)
a(n) = A069099(n) + A152740(n-1)
a(n) = A003215(n-1) + 12*A000217(n-1)
a(n) = A003215(n-1) + A049598(n-1)
a(n) = A005891(n-1) + 13*A000217(n-1)
a(n) = A005891(n-1) + A152741(n-1)
a(n) = A001844(n) + 14*A000217(n-1)
a(n) = A001844(n) + A163756(n-1)
a(n) = A005448(n) + 15*A000217(n-1)
a(n) = A005448(n) + A194715(n-1). (End)
E.g.f.: exp(x)*(1 + 9*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023

A103333 Number of closed walks on the graph of the (7,4) Hamming code.

Original entry on oeis.org

1, 3, 24, 192, 1536, 12288, 98304, 786432, 6291456, 50331648, 402653184, 3221225472, 25769803776, 206158430208, 1649267441664, 13194139533312, 105553116266496, 844424930131968, 6755399441055744, 54043195528445952, 432345564227567616
Offset: 0

Views

Author

Paul Barry, Jan 31 2005

Keywords

Comments

Counts closed walks of length 2n at the degree 3 node of the graph of the (7,4) Hamming code. With interpolated zeros, counts paths of length n at this node.
a(n+1) = A157176(A016945(n)). - Reinhard Zumkeller, Feb 24 2009
For n>0: a(n) = A083713(n) - A083713(n-1). - Reinhard Zumkeller, Feb 22 2010

References

  • David J.C. Mackay, Information Theory, Inference and Learning Algorithms, CUP, 2003, p. 19

Crossrefs

Cf. A000302, A004171. - Vincenzo Librandi, Jan 22 2009

Programs

Formula

G.f.: (1-5*x)/(1-8*x);
a(n) = (3*8^n + 5*0^n)/8.
a(n) = 8*a(n-1) for n > 0. - Harvey P. Dale, Mar 02 2012

A134495 a(n) = Fibonacci(6n + 3).

Original entry on oeis.org

2, 34, 610, 10946, 196418, 3524578, 63245986, 1134903170, 20365011074, 365435296162, 6557470319842, 117669030460994, 2111485077978050, 37889062373143906, 679891637638612258, 12200160415121876738
Offset: 0

Views

Author

Artur Jasinski, Oct 28 2007

Keywords

Comments

From Tanya Khovanova, Jan 06 2023: (Start)
Fibonacci(6n+3) are divisible by 2 but not by 4.
These numbers are not divisible by 3. (End)

Crossrefs

Programs

Formula

From R. J. Mathar, Apr 17 2011: (Start)
G.f.: (2-2*x) / (1 - 18*x + x^2).
a(n) = 2*A007805(n). (End)
a(n) = A000045(A016945(n)). - Michel Marcus, Nov 08 2013
a(n) = 2*(S(n, 18) - S(n-1, 18)), n >= 0, with the Chebyshev S-polynomials S(n-1, 18) = A049660(n). (See the g.f.) - Wolfdieter Lang, Jul 10 2018

Extensions

Index in definition and offset corrected by R. J. Mathar, Apr 17 2011

A092524 Binary representation of n interpreted in base p, where p is the smallest prime factor of n: p = A020639(n).

Original entry on oeis.org

1, 2, 4, 4, 26, 6, 57, 8, 28, 10, 1343, 12, 2367, 14, 40, 16, 83522, 18, 130341, 20, 91, 22, 280394, 24, 751, 26, 112, 28, 732512, 30, 954305, 32, 244, 34, 3131, 36, 69345327, 38, 256, 40, 115925123, 42, 147087994, 44, 280, 46, 229451087, 48
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 07 2004

Keywords

Comments

n>1: a(n) = n iff n is even.
a(n) = A005836(n) iff n=6k-3, k>0 (see A016945).
The following sequences all appear to have the same parity: A003071, A029886, A061297, A092524, A093431, A102393, A104258, A122248, A128975. - Jeremy Gardiner, Dec 28 2008

Examples

			n = 35 = 7*5 = '100011': 2^5 + 2^1 + 2^0 -> a(35) = 5^5 + 5^1 + 5^0 = 3125+5+1 = 3131.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[EvenQ[n], n, FromDigits[IntegerDigits[n, 2], FactorInteger[n][[1, 1]]]]; Array[a, 50] (* Amiram Eldar, Aug 02 2020 *)

A016948 a(n) = (6*n + 3)^4.

Original entry on oeis.org

81, 6561, 50625, 194481, 531441, 1185921, 2313441, 4100625, 6765201, 10556001, 15752961, 22667121, 31640625, 43046721, 57289761, 74805201, 96059601, 121550625, 151807041, 187388721, 228886641, 276922881, 332150625, 395254161, 466948881, 547981281, 639128961
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+3)^4: n in [0..50]]; // Vincenzo Librandi, May 05 2011
  • Mathematica
    a[n_] := (6*n + 3)^4; Array[a, 50, 0] (* Amiram Eldar, Mar 30 2022 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^4 = A016946(n)^2.
a(n) = 3^4*A016756(n).
Sum_{n>=0} 1/a(n) = Pi^4/7776. (End)

A059029 a(n) = n if n is even, 2*n + 1 if n is odd.

Original entry on oeis.org

0, 3, 2, 7, 4, 11, 6, 15, 8, 19, 10, 23, 12, 27, 14, 31, 16, 35, 18, 39, 20, 43, 22, 47, 24, 51, 26, 55, 28, 59, 30, 63, 32, 67, 34, 71, 36, 75, 38, 79, 40, 83, 42, 87, 44, 91, 46, 95, 48, 99, 50, 103, 52, 107, 54, 111, 56, 115, 58, 119, 60, 123, 62, 127, 64, 131, 66, 135
Offset: 0

Views

Author

Asher Auel, Dec 15 2000

Keywords

Comments

a(n-1) = n^k - 1 mod 2*n, n >= 1, for any k >= 2, also for k = n. - Wolfdieter Lang, Dec 21 2011

Crossrefs

a(n) = A022998(n+1) - 1 = A043547(n+3) - 3. Partial sums in A032438.

Programs

  • Magma
    [n+((n+1)/2)*(1-(-1)^n): n in [0..70]]; // Vincenzo Librandi, Aug 14 2011
  • Maple
    B := (n,m) -> lcm(n,m)/n + lcm(n,m)/m - 1: seq(B(m+2,m),m=1..90);
  • Mathematica
    Table[n +(n+1)*(1-(-1)^n)/2, {n,0,70}] (* G. C. Greubel, Nov 08 2018 *)
    Table[If[EvenQ[n],n,2n+1],{n,0,70}] (* or *) LinearRecurrence[{0,2,0,-1},{0,3,2,7},70] (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    a(n)=if(n%2,2*n+1,n)
    

Formula

G.f.: x*(x^2 + 2*x + 3)/(1 - x^2)^2. - Ralf Stephan, Jun 10 2003
Third main diagonal of A059026: a(n) = B(n+2, n) = lcm(n+2, n)/(n+2) + lcm(n+2, n)/n - 1 for all n >= 1.
a(2*n) + a(2*n+1) = A016945(n). - Paul Curtz, Aug 29 2008
E.g.f.: 2*x*cosh(x) + (1 + x)*sinh(x). - Franck Maminirina Ramaharo, Nov 08 2018

Extensions

New description from Ralf Stephan, Jun 10 2003

A157176 a(n+1) = a(n - n mod 2) + a(n - n mod 3), a(0) = 1.

Original entry on oeis.org

1, 2, 2, 3, 5, 8, 8, 16, 16, 24, 40, 64, 64, 128, 128, 192, 320, 512, 512, 1024, 1024, 1536, 2560, 4096, 4096, 8192, 8192, 12288, 20480, 32768, 32768, 65536, 65536, 98304, 163840, 262144, 262144, 524288, 524288, 786432, 1310720, 2097152, 2097152, 4194304, 4194304
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 24 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,0,8},{1, 2, 2, 3, 5, 8},45] (* Stefano Spezia, May 29 2024 *)

Formula

a(n+6) = 8*a(n).
a(6*k) = 8^k; a(A008588(n))=A001018(n);
a(6*k+1) = a(6*k+2) = 2*8^k; a(A016921(n))=a(A016933(n))=A013730(n);
a(6*k+3) = 3*8^k; a(A016945(n))=A103333(n+1);
a(6*k+4) = 5*8^k; a(A016957(n))=A067412(n+1);
a(6*k+5) = 8^(k+1); a(A016969(n))=A001018(n+1).
G.f.: (1 + 2*x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5)/((1 - 2*x^2)*(1 + 2*x^2 + 4*x^4)). - Stefano Spezia, May 29 2024

Extensions

a(43)-a(44) from Stefano Spezia, May 29 2024

A016949 a(n) = (6*n + 3)^5.

Original entry on oeis.org

243, 59049, 759375, 4084101, 14348907, 39135393, 90224199, 184528125, 345025251, 601692057, 992436543, 1564031349, 2373046875, 3486784401, 4984209207, 6956883693, 9509900499, 12762815625, 16850581551, 21924480357, 28153056843, 35723051649, 44840334375, 55730836701
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A000584.

Programs

  • Magma
    [(6*n+3)^5: n in [0..50]]; // Vincenzo Librandi, May 05 2011
  • Mathematica
    a[n_] := (6*n + 3)^5; Array[a, 50, 0] (* Amiram Eldar, Mar 30 2022 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^5.
a(n) = 3^5*A016757(n).
Sum_{n>=0} 1/a(n) = 31*zeta(5)/7776.
Sum_{n>=0} (-1)^n/a(n) = 5*Pi^5/373248. (End)

A349407 The Farkas map: a(n) = x/3 if x mod 3 = 0; a(n) = (3x+1)/2 if x mod 3 <> 0 and x mod 4 = 3; a(n) = (x+1)/2 if x mod 3 <> 0 and x mod 4 = 1, where x = 2*n-1.

Original entry on oeis.org

1, 1, 3, 11, 3, 17, 7, 5, 9, 29, 7, 35, 13, 9, 15, 47, 11, 53, 19, 13, 21, 65, 15, 71, 25, 17, 27, 83, 19, 89, 31, 21, 33, 101, 23, 107, 37, 25, 39, 119, 27, 125, 43, 29, 45, 137, 31, 143, 49, 33, 51, 155, 35, 161, 55, 37, 57, 173, 39, 179, 61, 41, 63, 191, 43
Offset: 1

Views

Author

Paolo Xausa, Nov 16 2021

Keywords

Comments

The map takes a positive odd integer x (= 2*n-1) and produces the positive odd integer a(n).
Farkas proves that the trajectory of the iterates of the map starting from any positive odd integer always reaches 1.
If displayed as a rectangular array with six columns, the columns include A016921, A016813, A016945, A004767, A239129 (see example). - Omar E. Pol, Jan 01 2022

Examples

			From _Omar E. Pol_, Jan 01 2022: (Start)
Written as a rectangular array with six columns read by rows the sequence begins:
   1,  1,  3,  11,  3,  17;
   7,  5,  9,  29,  7,  35;
  13,  9, 15,  47, 11,  53;
  19, 13, 21,  65, 15,  71;
  25, 17, 27,  83, 19,  89;
  31, 21, 33, 101, 23, 107;
  37, 25, 39, 119, 27, 125;
  43, 29, 45, 137, 31, 143;
  49, 33, 51, 155, 35, 161;
  55, 37, 57, 173, 39, 179;
...
(End)
		

References

  • H. M. Farkas, "Variants of the 3N+1 Conjecture and Multiplicative Semigroups", in Entov, Pinchover and Sageev, "Geometry, Spectral Theory, Groups, and Dynamics", Contemporary Mathematics, vol. 387, American Mathematical Society, 2005, p. 121.
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, American Mathematical Society, 2010, p. 74.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,0,2,0,0,0,0,0,-1},{1,1,3,11,3,17,7,5,9,29,7,35},100]
    Table[Which[Mod[n,3]==0,n/3,Mod[n,4]==3,(3n+1)/2,True,(n+1)/2],{n,1,200,2}] (* Harvey P. Dale, May 15 2022 *)
  • PARI
    a(n)=if (n%3==2, 2*n\3, if (n%2, n, 3*n-1)) \\ Charles R Greathouse IV, Nov 16 2021
    
  • Python
    def a(n):
        x = 2*n - 1
        return x//3 if x%3 == 0 else ((3*x+1)//2 if x%4 == 3 else (x+1)//2)
    print([a(n) for n in range(1, 66)]) # Michael S. Branicky, Nov 16 2021
Previous Showing 31-40 of 99 results. Next