cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 65 results. Next

A329066 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*k).

Original entry on oeis.org

1, 4, 1, 36, 12, 1, 400, 588, 20, 1, 4900, 49440, 2100, 28, 1, 63504, 5187980, 423440, 4956, 36, 1, 853776, 597027312, 117234740, 1751680, 9540, 44, 1, 11778624, 71962945824, 36938855520, 907687900, 5101200, 16236, 52, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2019

Keywords

Comments

T(n,k) is the number of (2*k)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n+1).
T(n,k) is the constant term in the expansion of (Sum_{j=0..2*n+1} (x^j + 1/x^j)*(y^(2*n+1-j) + 1/y^(2*n+1-j)) - x^(2*n+1) - 1/x^(2*n+1) - y^(2*n+1) - 1/y^(2*n+1))^(2*k).

Examples

			Square array begins:
   1,  4,   36,     400,       4900, ...
   1, 12,  588,   49440,    5187980, ...
   1, 20, 2100,  423440,  117234740, ...
   1, 28, 4956, 1751680,  907687900, ...
   1, 36, 9540, 5101200, 4190017860, ...
		

Crossrefs

Columns k=0-1 give A000012, A017113.
Rows n=0-2 give A002894, A329024, A329067.
Main diagonal gives A342964.

Programs

  • PARI
    {T(n, k) = polcoef(polcoef((sum(j=0, 2*n+1, (x^j+1/x^j)*(y^(2*n+1-j)+1/y^(2*n+1-j)))-x^(2*n+1)-1/x^(2*n+1)-y^(2*n+1)-1/y^(2*n+1))^(2*k), 0), 0)}
    
  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    T(n, k) = sum(j=0, 2*k, (-1)^j*binomial(2*k, j)*polcoef(f(n)^j*f(n-1)^(2*k-j), 0)^2)

Formula

See the second code written in PARI.

A047457 Numbers that are congruent to {3, 4} mod 8.

Original entry on oeis.org

3, 4, 11, 12, 19, 20, 27, 28, 35, 36, 43, 44, 51, 52, 59, 60, 67, 68, 75, 76, 83, 84, 91, 92, 99, 100, 107, 108, 115, 116, 123, 124, 131, 132, 139, 140, 147, 148, 155, 156, 163, 164, 171, 172, 179, 180, 187, 188, 195, 196, 203, 204, 211, 212, 219, 220, 227
Offset: 1

Views

Author

Keywords

Comments

Union of A017101 and A017113. - Michel Marcus, Feb 25 2014
Numbers whose binary reflected Gray code (A014550) has a single trailing zero. - Amiram Eldar, May 17 2021

Crossrefs

Programs

Formula

a(n) = 8*n - a(n-1) - 9 (with a(1) = 3). - Vincenzo Librandi, Aug 06 2010
G.f.: x*(3+x+4*x^2)/((1-x)^2*(1+x)). - Colin Barker, May 13 2012
a(n) = (-5 - 3*(-1)^n + 8*n)/2. - Colin Barker, May 14 2012
A000120(a(n)-1) = A000120(a(n)+1) = A063787(n). - Ilya Lopatin and Juri-Stepan Gerasimov, Feb 25 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/16 + log(2)/4 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021

A374933 Maximum number of squares covered (i.e., attacked) by 2 independent (i.e., non-attacking) queens on an n X n chessboard.

Original entry on oeis.org

9, 15, 23, 30, 37, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 140, 148, 156, 164, 172, 180, 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 356, 364, 372, 380, 388, 396, 404, 412, 420
Offset: 3

Views

Author

John King, Jul 24 2024

Keywords

Comments

It is not possible to place two non-attacking queens on a 1 X 1 or 2 X 2 chessboard.

Crossrefs

Cf. A017113, A047461 (case for one queen).

Formula

a(n) = 8*n - 20 for n >= 8.
G.f.: x^3*(9 - 3*x + 2*x^2 - x^3 + x^6)/(1 - x)^2. - Stefano Spezia, Jul 25 2024

A337940 Triangle read by rows: T(n, k) = T(n+2) - T(n-k), with the triangular numbers T = A000217, for n >= 1, k = 1, 2, ..., n.

Original entry on oeis.org

6, 9, 10, 12, 14, 15, 15, 18, 20, 21, 18, 22, 25, 27, 28, 21, 26, 30, 33, 35, 36, 24, 30, 35, 39, 42, 44, 45, 27, 34, 40, 45, 49, 52, 54, 55, 30, 38, 45, 51, 56, 60, 63, 65, 66, 33, 42, 50, 57, 63, 68, 72, 75, 77, 78, 36, 46, 55, 63, 70, 76, 81, 85, 88, 90, 91
Offset: 1

Views

Author

Wolfdieter Lang, Nov 23 2020

Keywords

Comments

This number triangle results from the array A(n, m) = T(n+m+1) - T(n-1), with T = A000217, for n, m >= 1. For this array see the example by Bob Selcoe, in A111774 (but with rows continued). The present triangle is obtained by reading the array by upwards antidiagonals: T(n, k) = A(n+1-k, k). See also the Jul 09 2019 comment by Ralf Steiner with the formula c_k(n) (rows k >= 1, columns n >= 3), rewritten for A(n, m) = (m+2)*(2*n+m+1)/2, leading to T(n, k) = (k+2)*(2*n-k+3)/2.
Therefore this triangle is related to the problem of giving the numbers which are sums of at least three consecutive positive integers given as sequence A111774. It allows us to find the multiplicities for the numbers of A111774. They are given in A338428(n).
To obtain the multiplicity for number N (>= 6) from A111774 one has to consider only the triangle rows n = 1, 2, ..., floor((N-3)/3).
The row reversed triangle, considered by Bob Selcoe in A111774, is T(n, n-k+1) = T(n+2) - T(k-1), for n >= 1, and k=1, 2, ..., n.
This triangle contains no odd prime numbers and no exact powers 2^m, for m >= 0. This can be seen by considering the diagonal sequences D(d, k), for d >= 1, k >= 1 or the row sequences of the array A(n, m), for n >= 1 and m >= 1. The result is A(r+1, s-2) = s*(s + 2*r + 1)/2, for r >= 0 and s >= 3 (from the g.f. of the diagonals of T given below). This is also given in the Jul 09 2019 comment by Ralf Steiner in A111774. Therefore A(r+1, s-2) is a product of two numbers >= 2, hence not a prime. And in both cases (i) s/2 integer or (ii) (s + 2*r + 1)/2 integer not both numbers can be powers of 2 by simple parity arguments.
The previous comment means that each T(n, k) has at least one odd prime as a proper divisor.
A number N appears in this triangle, or in A111774, if and only if floor(N/2) - delta(N) >= 1, where delta(N) = A055034(N). For the sequence b(n) := floor(n/2) - delta(n), for n >= 2, see A219839(n), b(1) = -1. See a W. Lang comment in A111774 for the proof.

Examples

			The triangle T(n, k) begins:
n \ k  1  2  3  4  5   6   7   8   9  10  11  12  13  14  15 ...
1:     6
2:     9 10
3:    12 14 15
4:    15 18 20 21
5:    18 22 25 27 28
6:    21 26 30 33 35  36
7:    24 30 35 39 42  44  45
8:    27 34 40 45 49  52  54  55
9:    30 38 45 51 56  60  63  65  66
10:   33 42 50 57 63  68  72  75  77  78
11:   36 46 55 63 70  76  81  85  88  90  91
12:   39 50 60 69 77  84  90  95  99 102 104 105
13:   42 54 65 75 84  92  99 105 110 114 117 119 120
14:   45 58 70 81 91 100 108 115 121 126 130 133 135 136
15:   48 62 75 87 98 108 117 125 132 138 143 147 150 152 153
...
N = 15 appears precisely twice from the sums 4+5+6 = A(4, 1) = T(4, 1), and (1+2+3)+4+5 = A(1, 3) = T(3, 3), i.e., with a sum of 3 and 5 consecutive positive integers.
N = 42 appears three times from the sums 13+14+15 = A(13, 1) = T(13, 1), 9+10+11 +12 = A(9, 2) = T(10, 2), 3+4+5+6+7+8+9 = A(3, 5) = T(7, 5); i.e., 42 can be written as a sum of 3, 4 and 7 consecutive positive integers.
		

Crossrefs

Cf. A055034, A111774, A338428 (multiplicities), A219839.
For columns k = 1, 2, ..., 10 see A008585, A016825, A008587, A016945, A008589, A017113, A008591, A017329, A008593, A017593.
For diagonals d = 1, 2, ..., 10 see A000217, A000096, A055998, A055999, A056000, A056115, A056119 , A056121, A056126, A051942.

Programs

  • Mathematica
    Flatten[Table[((n+2)*(n+3)-(n-k)*(n-k+1))/2,{n,11},{k,n}]] (* Stefano Spezia, Nov 24 2020 *)

Formula

T(n, k) = ((n+2)*(n+3) - (n-k)*(n-k+1))/2, for n >= 1 and k = 1, 2, ..., n (see the name).
T(n, k) = (k+2)*(2*n-k+3)/2 (factorized).
G.f. columns k = 2*j+1, for j >= 0: Go(j, x) = x^(2*j+1)*(2*j+3)*(j+2 - (j+1)*x)/(1-x)^2,
G.f. columns k = 2*j, for j >= 1: Ge(j, x) = x^(2*j)*(j+1)*(2*j+3 - (2*j+1)*x)/(1-x)^2.
G.f. row polynomials: G(z,x) = z*x*(1 + z*x)^3*{3*(2-z) - (8-3*z)*(z*x) + (3-z)*(z*x)^2}/((1 - z)^2*(1 - (z*x)^2)^3).
G.f. diagonals d >= 1: GD(d, x) = ((d+1)*3 - (5*d+3)*x + (2*d+1)*x^2)/(1-x)^3.
G.f. of GD(d, x): GGD(z,x) = (6-8*x+3*x^2 - (3-3*x+x^2)*z)/((1-x)^3*(1-z)^2).

A365883 Numbers k whose least prime divisor is equal to its exponent in the prime factorization of k.

Original entry on oeis.org

4, 12, 20, 27, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 135, 140, 148, 156, 164, 172, 180, 188, 189, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 297, 300, 308, 316, 324, 332, 340, 348, 351, 356, 364, 372, 380, 388, 396
Offset: 1

Views

Author

Amiram Eldar, Sep 22 2023

Keywords

Comments

Numbers k such that A020639(k) = A051904(k).
The asymptotic density of terms with least prime factor prime(n) (within all the positive integers) is d(n) = (1/prime(n)^prime(n) - 1/prime(n)^(prime(n)+1)) * Product_{k=1..(n-1)} (1-1/prime(k)). For example, for n = 1, 2, 3, 4 and 5, d(n) = 1/8, 1/81, 4/46875, 8/28824005 and 16/21968998637047.
The asymptotic density of this sequence is Sum_{n>=1} d(n) = 0.13743128989284883653... .

Examples

			4 = 2^2 is a term since its least prime factor, 2, is equal to its exponent.
		

Crossrefs

Subsequence of A100717 and A365889.
Subsequences: A017113, A365884, A365885.

Programs

  • Maple
    filter:= proc(n) local F;
       F:= sort(ifactors(n)[2],(s,t) -> s[1]Robert Israel, Sep 22 2023
  • Mathematica
    q[n_] := Equal @@ FactorInteger[n][[1]]; Select[Range[2, 400], q]
  • PARI
    is(n) = n > 1 && #Set(factor(n)[1,]) == 1;

A374934 Maximum number of squares covered (i.e., attacked) by 4 independent (i.e., nonattacking) queens on an n X n chessboard.

Original entry on oeis.org

16, 25, 36, 49, 62, 76, 92, 104, 120, 136, 152, 168, 184, 200, 216
Offset: 4

Views

Author

John King, Aug 08 2024

Keywords

Examples

			4 X 4:
  x Q x x
  x x x Q
  Q x x x
  x x Q x
5 X 5 there are several arrangements:
  x Q x x x
  x x x x x
  x x x x Q
  Q x x x x
  x x x Q x
6 X 6 and 7 X 7 (add a row and column) pattern as 4 queens knight-1,3 and 1,4 separation (not symmetric):
  . . . . . . .
  x x x x Q x .
  Q x x x x x .
  x x x x x x .
  x x x x x Q .
  x Q x x x x .
8 X 8: queens all knight-1,4 apart;
8 X 8 has 2 o/s;
9 X 9 has 5 o/s;
10 X 10 has 8 o/s;
  o x x x x x x x x o
  x o x x x x x x o x
  x x x Q x x x x x x
  x x x x x x x Q x x
  x x x x x x x x x x
  x x x x x x x x x x
  x x Q x x x x x x x
  x x x x x x Q x x x
  x o x x x x x x o x
  o x x x x x x x x o
beyond 10 X 10, the 4 queens separated as 1,2 knights begins to be the best layout; at 15 X 15, the pattern is clear.
  o x x o o x x x x o o x x o x
  x o x x o x x x x o x x o x x
  x x o x x x x x x x x o x x o
  o x x o x x x x x x o x x o o
  o o x x o x x x x o x x o o o
  x x x x x x Q x x x x x x x x
  x x x x x x x x Q x x x x x x
  x x x x x Q x x x x x x x x x
  x x x x x x x Q x x x x x x x
  o o x x o x x x x o x x o o o
  o x x o x x x x x x o x x o o
  x x o x x x x x x x x o x x o
  x o x x o x x x x o x x o x x
  o x x o o x x x x o o x x o x
  x x o o o x x x x o o o x x o
		

Crossrefs

Extensions

a(18) added using data from Mia Muessig by Andrew Howroyd, Oct 05 2024

A001533 a(n) = (8*n+1)*(8*n+7).

Original entry on oeis.org

7, 135, 391, 775, 1287, 1927, 2695, 3591, 4615, 5767, 7047, 8455, 9991, 11655, 13447, 15367, 17415, 19591, 21895, 24327, 26887, 29575, 32391, 35335, 38407, 41607, 44935, 48391, 51975, 55687, 59527, 63495, 67591, 71815, 76167, 80647, 85255, 89991, 94855, 99847, 104967
Offset: 0

Views

Author

Keywords

Comments

From Klaus Purath, Aug 18 2022: (Start)
This is A028560(8*n+1), and thus a(n) + 9 is a square. (See formulas)
7 is the only prime number of this sequence in which all odd prime factors occur.
Each prime factor p appears exactly twice in any interval of p consecutive terms. If a(m) and a(n) are within such an interval containing p, then m + n == -1 (mod p). (End)

Crossrefs

Programs

Formula

a(n) = 4*A001539(n) - 5.
a(n) = 128*n + a(n-1) with a(0)=7. - Vincenzo Librandi, Nov 12 2010
Sum_{n>=0} 1/a(n) = (Psi(7/8)-Psi(1/8))/48 = 0.1580099..., see A250129. - R. J. Mathar, May 30 2022 [ = (sqrt(2)+1)*Pi/48. - Amiram Eldar, Sep 08 2022]
From Klaus Purath, Aug 18 2022: (Start)
a(n) = A028560(8*n+1).
a(n) + 9 = ((a(n+1) - a(n-1))/32)^2 = A017113(n)^2.
a(2*n) = (a(n+1) - a(n-1))*n + 7. (End)
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017077(n)*A004771(n).
Sum_{n>=0} (-1)^n/a(n) = (cos(Pi/8) * log(cot(Pi/16)) + sin(Pi/8) * log(cot(3*Pi/16)))/12.
Product_{n>=0} (1 - 1/a(n)) = cosec(Pi/8)*cos(sqrt(5/2)*Pi/4).
Product_{n>=0} (1 + 1/a(n)) = cosec(Pi/8)*cos(sqrt(2)*Pi/4). (End)
G.f.: -(7+114*x+7*x^2)/(x-1)^3. - R. J. Mathar, Apr 23 2024
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: exp(x)*(7 + 64*x*(2 + x)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A294628 a(n) = 8*(sigma(n) - n + (1/2)).

Original entry on oeis.org

4, 12, 12, 28, 12, 52, 12, 60, 36, 68, 12, 132, 12, 84, 76, 124, 12, 172, 12, 180, 92, 116, 12, 292, 52, 132, 108, 228, 12, 340, 12, 252, 124, 164, 108, 444, 12, 180, 140, 404, 12, 436, 12, 324, 268, 212, 12, 612, 68, 348, 172, 372, 12, 532, 140, 516, 188, 260, 12, 868, 12, 276
Offset: 1

Views

Author

Omar E. Pol, Nov 05 2017

Keywords

Crossrefs

Programs

  • GAP
    List([1..10^5],n->8*(Sigma(n)-n+(1/2))); # Muniru A Asiru, Mar 04 2018
  • Maple
    with(numtheory): seq(sigma(8*n-1)/8, n=1..10^3); # Muniru A Asiru, Mar 04 2018
  • Mathematica
    a[n_] := 8 (DivisorSigma[1, n] - n) + 4; Array[a, 62] (* Robert G. Wilson v, Dec 12 2017 *)

Formula

a(n) = 4*A294015(n).
a(n) = 8*(A001065(n) + (1/2)).
a(n) = 8*(A000203(n) - n + (1/2)).
a(n) = A239050(n) - 4*A235796(n).
a(n) = A017113(n-1) - 8*A235796(n).

A373318 Numerator of the asymptotic density of numbers that are unitarily divided by n.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 3, 8, 1, 16, 1, 18, 1, 4, 5, 22, 1, 4, 3, 2, 3, 28, 2, 30, 1, 20, 4, 24, 1, 36, 9, 8, 1, 40, 1, 42, 5, 8, 11, 46, 1, 6, 1, 32, 3, 52, 1, 8, 3, 4, 7, 58, 1, 60, 15, 4, 1, 48, 5, 66, 2, 44, 6, 70, 1, 72, 9, 8, 9, 60, 2, 78
Offset: 1

Views

Author

Amiram Eldar, Jun 01 2024

Keywords

Comments

Numbers that are unitarily divided by n are numbers k such that n is a unitary divisor of k, or equivalently, numbers of the form m*n, with gcd(m, n) = 1.

Examples

			Fractions begin with: 1, 1/4, 2/9, 1/8, 4/25, 1/18, 6/49, 1/16, 2/27, 1/25, 10/121, 1/36, ...
For n = 2, the numbers that are unitarily divided by 2 are the numbers of the form 4*k+2 whose asymptotic density is 1/4. Therefore a(2) = numerator(1/4) = 1.
		

Crossrefs

Numbers that are unitarily divided by k: A000027 (k=1), A016825 (k=2), A016051 (k=3), A017113 (k=4), A051062 (k=8), A051063 (k=9).

Programs

  • Mathematica
    a[n_] := Numerator[EulerPhi[n]/n^2]; Array[a, 100]
  • PARI
    a(n) = numerator(eulerphi(n)/n^2);

Formula

a(n) = 1 if and only if n is in A090778.
a(n) = A000010(n) if and only if n is a cyclic number (A003277).
Let f(n) = a(n)/A373319(n). Then:
f(n) = A000010(n)/n^2 = A076512(n)/(n*A109395(n)).
f(n) = A173557(n)/A064549(n).
f(n) is multiplicative with f(p^e) = (1 - 1/p)/p^e.
Sum_{k=1..n} f(k) = (log(n) + gamma - zeta'(2)/zeta(2)) / zeta(2), where gamma is Euler's constant (A001620).

A017114 a(n) = (8*n + 4)^2.

Original entry on oeis.org

16, 144, 400, 784, 1296, 1936, 2704, 3600, 4624, 5776, 7056, 8464, 10000, 11664, 13456, 15376, 17424, 19600, 21904, 24336, 26896, 29584, 32400, 35344, 38416, 41616, 44944, 48400, 51984, 55696, 59536, 63504, 67600, 71824, 76176, 80656, 85264, 90000, 94864, 99856
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Paul Curtz, Nov 07 2008: (Start)
a(n) = 16*A016754(n).
a(n+2) = A061042(2n+1), from Brackett spectrum of hydrogen. (End)
G.f.: -16*(1 + 6*x + x^2)/(x-1)^3. - R. J. Mathar, Jul 14 2016
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = A017113(n)^2.
a(n) = 2^2*A016826(n).
Sum_{n>=0} 1/a(n) = Pi^2/128.
Sum_{n>=0} (-1)^n/a(n) = G/16, where G is Catalan's constant (A006752). (End)
Previous Showing 31-40 of 65 results. Next