cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A090570 Numbers that are congruent to {0, 1} mod 9.

Original entry on oeis.org

0, 1, 9, 10, 18, 19, 27, 28, 36, 37, 45, 46, 54, 55, 63, 64, 72, 73, 81, 82, 90, 91, 99, 100, 108, 109, 117, 118, 126, 127, 135, 136, 144, 145, 153, 154, 162, 163, 171, 172, 180, 181, 189, 190, 198, 199, 207, 208, 216, 217, 225, 226
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 25 2004

Keywords

Examples

			13 is 1101 in base 2, so a(13+1) = a(14) = 36*1 + 18*1 + 9*0 + 1*1 = 36+18+1 = 55. - _Philippe Deléham_, Oct 17 2011
		

Crossrefs

Union of A008591 and A017173. - Reinhard Zumkeller, Oct 10 2008

Programs

Formula

A145389(a(n)) = A010888(a(n)). - Reinhard Zumkeller, Oct 10 2008
a(n) = 9*n - a(n-1) - 17 (with a(1)=0). - Vincenzo Librandi, Nov 16 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 9*n/2 - 25/4 - 7*(-1)^n/4.
G.f.: x^2*(1+8*x)/( (1+x)*(1-x)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*A005010(k-1), with A005010(-1)=1. - Philippe Deléham, Oct 17 2011.
E.g.f.: 8 + ((18*x - 25)*exp(x) - 7*exp(-x))/4. - David Lovler, Sep 03 2022

A213651 10-nomial coefficient array: Coefficients of the polynomial (1 + ... + X^9)^n, n=0,1,...

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 63, 69, 73, 75, 75, 73, 69, 63, 55, 45, 36, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 282, 348, 415, 480
Offset: 0

Views

Author

M. F. Hasler, Jun 17 2012

Keywords

Comments

The n-th row also yields the number of ways to get a total of n, n+1, ..., 10n, when throwing n 10-sided dice, or summing n integers ranging from 1 to 10.
The row sums equal 10^n = A011557(n).
The row lengths are 1 + 9n = 10n - (n-1) = A017173(n).
T(n,k) is the number of integers in the [0, 10^n-1] range distributed according to the sum k of their digits. - Miquel Cerda, Jun 21 2017
The sum of the squares of the integers of the n-th row gives A174061(n). - Miquel Cerda, Jul 03 2017

Examples

			There are 1, 3, 6, 10, ... ways to score a total of 4, 5, 6, 7, ... when throwing three 10-sided dice.
The table begins as follows:
(row n=0) 1; (row sum = 1, row length = 1)
(row n=1) 1,1,1,1,1,1,1,1,1,1; (row sum = 10, row length = 10)
(row n=2) 1,2,3,4,5,6,7,8,9,10,9,8,7,6,5,4,3,2,1; (sum = 100, length = 19)
(row n=3) 1,3,6,10,15,21,28,36,45,55,63,69,73,75,75,73,...; row sum = 1000;
(row n=4) 1,4,10,20,35,56,84,120,165,220,282,348,415,...; row sum = 10^4;
etc.
Number of integers in (row n=2): k(2)=3, because in the range 0 to 99 there are 3 integers whose digits sum to 2: 2, 11 and 20. - _Miquel Cerda_, Jun 21 2017
		

Crossrefs

The q-nomial arrays are for q=2..10: A007318 (Pascal), A027907, A008287, A035343, A063260, A063265, A171890, A213652, A213651.

Programs

  • Maple
    #Define the r-nomial coefficients for r = 1, 2, 3, ...
    rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)):
    #Display the 10-nomials as a table
    r := 10:  rows := 10:
    for n from 0 to rows do
    seq(rnomial(r,n,k), k = 0..(r-1)*n)
    end do;
    # Peter Bala, Sep 07 2013
  • PARI
    concat(vector(5,k,Vec(sum(j=0,9,x^j)^(k-1))))

Formula

T(n,k) = Sum_{i = 0..floor(k/10)} (-1)^i*binomial(n,i)*binomial(n+k-1-10*i,n-1) for n >= 0 and 0 <= k <= 9*n. - Peter Bala, Sep 07 2013

A081045 10th binomial transform of (1,9,0,0,0,0,0,...).

Original entry on oeis.org

1, 19, 280, 3700, 46000, 550000, 6400000, 73000000, 820000000, 9100000000, 100000000000, 1090000000000, 11800000000000, 127000000000000, 1360000000000000, 14500000000000000, 154000000000000000, 1630000000000000000, 17200000000000000000, 181000000000000000000
Offset: 0

Views

Author

Paul Barry, Mar 04 2003

Keywords

Comments

From Bernard Schott, Nov 12 2022: (Start)
For n >= 1, a(n-1) is the number of digits 1 (or any nonzero digit) that are necessary to write all the n-digit integers, while the corresponding number of digits 0 to write all these n-digit integers is A212704(n-1) for n >=2.
E.g.: a(2-1) = 19 since 19 digits 2's are required to write integers with a digit 2 from 10 up to 99: {12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92}.
First difference of A053541. (End)

Crossrefs

Programs

  • Magma
    [(9*n+10)*10^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 10 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{20,-100},{1,19},20] (* Harvey P. Dale, Dec 28 2023 *)

Formula

a(n) = 20*a(n-1) - 100*a(n-2); a(0)=1, a(1)=19.
a(0)=1; for n>= 1, a(n) = (9*n+10)*10^(n-1) = 10^(n-1)*A017173(n+1).
a(n) = Sum_{k=0..n} (k+1)*9^k*binomial(n, k).
G.f.: (1-x)/(1-10*x)^2.
a(n) = A053541(n+1) - A053541(n), for n >= 1. - Bernard Schott, Nov 12 2022
E.g.f.: exp(10*x)*(1 + 9*x). - Stefano Spezia, Jan 31 2025

A247681 Odd nonprimes congruent to 1 modulo 9.

Original entry on oeis.org

1, 55, 91, 145, 217, 235, 253, 289, 325, 343, 361, 415, 451, 469, 505, 559, 595, 649, 667, 685, 703, 721, 775, 793, 847, 865, 901, 955, 973, 1027, 1045, 1081, 1099, 1135, 1189, 1207, 1225, 1243, 1261, 1315, 1333, 1351, 1369, 1387, 1405
Offset: 1

Views

Author

Odimar Fabeny, Sep 22 2014

Keywords

Comments

Subsequence of A017173.

Crossrefs

Cf. A017173, A247676, A247678, A247679, A247682, A247683, A247900 (first differences).

Programs

  • Mathematica
    Select[18Range[0, 99] + 1, Not[PrimeQ[#]] &] (* Alonso del Arte, Sep 25 2014 *)
    Select[Range[1,1500,18],!PrimeQ[#]&] (* Harvey P. Dale, Mar 07 2018 *)
  • PARI
    lista(nn) = {forcomposite(n=1, nn, if ((n % 2) && ((n % 9) == 1), print1(n, ", ")); ); } \\ Michel Marcus, Sep 22 2014

A156144 Number of partitions of n into parts having in decimal representation the same digital root as n has.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 3, 2, 3, 1, 1, 2, 1, 1, 3, 5, 2, 5, 1, 1, 2, 1, 1, 5, 8, 4, 8, 2, 1, 4, 1, 1, 7, 13, 5, 13, 2, 2, 5, 1, 1, 11, 20, 9, 19, 3, 2, 9, 1, 1, 15, 31, 12, 29, 4, 3, 11, 2, 1, 22, 46, 20, 42, 7, 4, 18, 2, 2, 30, 68, 27, 61, 9, 6, 23, 3, 2, 42, 98, 42, 85
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 05 2009

Keywords

Comments

a(n) <= a(n+9); Max{n: a(n)=1} = 71;
A156145 and A017173 give record values and where they occur: a(A017173(n-1))=A156145(n);
a(A017173(n)) = A116371(A017173(n)).

Examples

			a(19) = #{19, 10+1+1+1+1+1+1+1+1+1, 19x1} = 3;
a(20) = #{20, 2+2+2+2+2+2+2+2+2+2} = 2;
a(21) = #{21, 3+3+3+3+3+3+3, 12+3+3+3} = 3;
a(22) = #{22} = 1;
		

Crossrefs

Programs

  • Haskell
    a156144 n = p [x | x <- [1..n], a010888 x == a010888 n] n where
       p _  0 = 1
       p [] _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 04 2014

A172171 (1, 9) Pascal Triangle read by horizontal rows. Same as A093644, but mirrored and without the additional row/column (1, 9, 9, 9, 9, ...).

Original entry on oeis.org

1, 1, 10, 1, 11, 19, 1, 12, 30, 28, 1, 13, 42, 58, 37, 1, 14, 55, 100, 95, 46, 1, 15, 69, 155, 195, 141, 55, 1, 16, 84, 224, 350, 336, 196, 64, 1, 17, 100, 308, 574, 686, 532, 260, 73, 1, 18, 117, 408, 882, 1260, 1218, 792, 333, 82
Offset: 1

Views

Author

Mark Dols, Jan 28 2010

Keywords

Comments

Binomial transform of A017173.

Examples

			Triangle begins:
  1;
  1, 10;
  1, 11,  19;
  1, 12,  30,  28;
  1, 13,  42,  58,   37;
  1, 14,  55, 100,   95,   46;
  1, 15,  69, 155,  195,  141,   55;
  1, 16,  84, 224,  350,  336,  196,   64;
  1, 17, 100, 308,  574,  686,  532,  260,   73;
  1, 18, 117, 408,  882, 1260, 1218,  792,  333,   82;
  1, 19, 135, 525, 1290, 2142, 2478, 2010, 1125,  415,  91;
  1, 20, 154, 660, 1815, 3432, 4620, 4488, 3135, 1540, 506, 100;
		

Crossrefs

Cf. A007318, A017173, A050489 (central terms), A093644, A139634 (row sums).

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<1 || k>n, 0, If[k==1, 1, If[n==2 && k==2, 10, T[n-1, k] + 2*T[n-1, k-1] - T[n-2, k-1] - T[n-2, k-2]]]];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Apr 24 2022 *)
  • SageMath
    @CachedFunction
    def T(n,k):
        if (k<1 or k>n): return 0
        elif (k==1): return 1
        elif (n==2 and k==2): return 10
        else: return T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2)
    flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Apr 24 2022

Formula

T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(n,1) = 1, T(2,2) = 10, T(n,k) = 0 if k < 1 or if k > n.
Sum_{k=0..n} T(n, k) = A139634(n).
T(2*n-1, n) = A050489(n).

Extensions

More terms from Philippe Deléham, Dec 25 2013

A147296 a(n) = n*(9*n+2).

Original entry on oeis.org

0, 11, 40, 87, 152, 235, 336, 455, 592, 747, 920, 1111, 1320, 1547, 1792, 2055, 2336, 2635, 2952, 3287, 3640, 4011, 4400, 4807, 5232, 5675, 6136, 6615, 7112, 7627, 8160, 8711, 9280, 9867, 10472, 11095, 11736, 12395, 13072, 13767, 14480, 15211, 15960
Offset: 0

Views

Author

Paul Curtz, Nov 05 2008

Keywords

Comments

For n >= 1, the continued fraction expansion of sqrt(4*a(n)) is [6n; {1, 1, 1, 3n-1, 1, 1, 1, 12n}]. - Magus K. Chu, Sep 17 2022

Crossrefs

Equals first 9-fold decimation of A144454.

Programs

  • Mathematica
    Table[n(9n+2),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,11,40},50] (* Harvey P. Dale, Dec 19 2014 *)
  • PARI
    A147296(n) = n*(9*n + 2) \\ M. F. Hasler, Mar 01 2009

Formula

a(n) = n*(9*n + 2), as conjectured by V. Librandi. - M. F. Hasler, Mar 01 2009
G.f.: x*(11+7*x)/(1-x)^3. - Jaume Oliver Lafont, Aug 30 2009
a(n) = floor((3*n + 1/3)^2). - Reinhard Zumkeller, Apr 14 2010
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: exp(x)*x*(11 + 9*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

More terms from M. F. Hasler, Mar 01 2009

A154684 Triangle read by rows where T(m,n)=2mn + m + n - 3, 1<=n<=m.

Original entry on oeis.org

1, 4, 9, 7, 14, 21, 10, 19, 28, 37, 13, 24, 35, 46, 57, 16, 29, 42, 55, 68, 81, 19, 34, 49, 64, 79, 94, 109, 22, 39, 56, 73, 90, 107, 124, 141, 25, 44, 63, 82, 101, 120, 139, 158, 177, 28, 49, 70, 91, 112, 133, 154, 175, 196, 217, 31, 54, 77, 100, 123, 146, 169
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Comments

2*T(m,n)+7 = (2n+1)*(2m+1) is not prime.
First column: A016777; second column: A016897; third column: A008589; fourth column: A017173. - Vincenzo Librandi, Nov 19 2012

Examples

			Triangle begins:
1;
4,  9;
7,  14, 21;
10, 19, 28, 37;
13, 24, 35, 46, 57;
16, 29, 42, 55, 68,  81;
19, 34, 49, 64, 79,  94,  109;
22, 39, 56, 73, 90,  107, 124, 141;
25, 44, 63, 82, 101, 120, 139, 158, 177;
28, 49, 70, 91, 112, 133, 154, 175, 196, 217; etc.
		

Crossrefs

Programs

  • Magma
    [(2*n*k + n + k - 3): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 19 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k - 3; Table[t[n, k], {n, 20}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 19 2012 *)

A211821 Numbers with all divisors with additive digital root of 1.

Original entry on oeis.org

1, 19, 37, 73, 109, 127, 163, 181, 199, 271, 307, 361, 379, 397, 433, 487, 523, 541, 577, 613, 631, 703, 739, 757, 811, 829, 883, 919, 937, 991, 1009, 1063, 1117, 1153, 1171, 1279, 1297, 1369, 1387, 1423, 1459, 1531, 1549, 1567, 1621, 1657, 1693, 1747, 1783
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2012

Keywords

Comments

All divisors of numbers from this sequence are in this sequence. Likewise, the product of any terms in this sequence is a number that is also in this sequence.
Union of A061237 (prime numbers == 1 (mod 9)) and nonprime numbers A211822.
Subsequence of A017173 (numbers of form 9n+1). - Jaroslav Krizek
For prime numbers, it is enough to verify that the number itself is congruent to 1 mod 9. The first composite term is 361, which is the square of the first prime in this sequence. - Alonso del Arte, May 02 2012

Examples

			Number 703 with divisors 1, 19, 37, 703 is in sequence because all divisors have additive digital root of 1.
		

Crossrefs

Programs

  • Mathematica
    digitalRoot[n_, b_:10] := FixedPoint[Plus@@IntegerDigits[#, b] &,  n]; A211821 = Select[Range[1, 1999, 9], Union[digitalRoot[Divisors[#]]] == {1} &] (* Alonso del Arte, May 02 2012 *)

Formula

a(n) = 9*k(n) + 1 for k(n) = A211823(n).

A301451 Numbers congruent to {1, 7} mod 9.

Original entry on oeis.org

1, 7, 10, 16, 19, 25, 28, 34, 37, 43, 46, 52, 55, 61, 64, 70, 73, 79, 82, 88, 91, 97, 100, 106, 109, 115, 118, 124, 127, 133, 136, 142, 145, 151, 154, 160, 163, 169, 172, 178, 181, 187, 190, 196, 199, 205, 208, 214, 217, 223, 226, 232, 235, 241, 244, 250, 253, 259, 262, 268
Offset: 1

Views

Author

Bruno Berselli, Mar 21 2018

Keywords

Comments

First bisection of A056991, second bisection of A242660.
The squares of the terms of A174396 are the squares of this sequence.

Crossrefs

Cf. A274406: numbers congruent to {0, 8} mod 9.
Cf. A193910: numbers congruent to {2, 6} mod 9.

Programs

  • GAP
    a := [1,7,10];; for n in [4..60] do a[n] := a[n-1] + a[n-2] - a[n-3]; od; a;
    
  • Magma
    &cat [[9*n+1, 9*n+7]: n in [0..40]];
    
  • Mathematica
    Table[2 (2 n - 1) + (2 n - 3 (1 - (-1)^n))/4, {n, 1, 60}]
    {#+1,#+7}&/@(9*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{1,7,10},60] (* Harvey P. Dale, Nov 08 2020 *)
  • PARI
    Vec(x*(1 + 6*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Mar 22 2018
  • Python
    [2*(2*n-1)+(2*n-3*(1-(-1)**n))/4 for n in range(1,70)]
    
  • Sage
    [n for n in (1..300) if n % 9 in (1,7)]
    

Formula

O.g.f.: x*(1 + 6*x + 2*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: (3 + 8*exp(x) - 11*exp(2*x) + 18*x*exp(2*x))*exp(-x)/4.
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = 2*(2*n - 1) + (2*n - 3*(1 - (-1)^n))/4. Therefore, for n even a(n) = (9*n - 4)/2, otherwise a(n) = (9*n - 7)/2.
a(2n+1) = A017173(n). a(2n) = A017245(n-1). - R. J. Mathar, Feb 28 2019
Previous Showing 11-20 of 44 results. Next