A050489
a(n) = C(n)*(10*n + 1) where C(n) = Catalan numbers (A000108).
Original entry on oeis.org
1, 11, 42, 155, 574, 2142, 8052, 30459, 115830, 442442, 1696396, 6525246, 25169452, 97319900, 377096040, 1463921595, 5692584870, 22169259090, 86452604700, 337547269290, 1319388204420, 5162382341220, 20217646564440, 79246770753150, 310866899505084
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
A083678
Numbers m = d_1 d_2 ... d_k (in base 10) with properties that k is even and d_i + d_{k+1-i} = 10 for all i.
Original entry on oeis.org
19, 28, 37, 46, 55, 64, 73, 82, 91, 1199, 1289, 1379, 1469, 1559, 1649, 1739, 1829, 1919, 2198, 2288, 2378, 2468, 2558, 2648, 2738, 2828, 2918, 3197, 3287, 3377, 3467, 3557, 3647, 3737, 3827, 3917, 4196, 4286, 4376, 4466, 4556, 4646, 4736, 4826, 4916
Offset: 1
1469 and 6284 are members because 1+9=4+6=10 and 6+4=2+8=10.
-
ok10Q[n_]:=Module[{idn=IntegerDigits[n]},idn[[1]]+idn[[4]]==idn[[2]]+idn[[3]]==10]; Join[ Select[ Range[10,99],Total[IntegerDigits[#]]==10&],Select[Range[1000,9999],ok10Q]] (* Harvey P. Dale, Oct 14 2023 *)
-
isok(n) = {digs = digits(n); if (#digs % 2 == 0, for (i = 1, #digs/2, if ((digs[i] + digs[#digs+1-i]) ! = 10, return (0));); return (1);); return (0);} \\ Michel Marcus, Oct 05 2013
A139619
a(n) = 171*n + 19.
Original entry on oeis.org
19, 190, 361, 532, 703, 874, 1045, 1216, 1387, 1558, 1729, 1900, 2071, 2242, 2413, 2584, 2755, 2926, 3097, 3268, 3439, 3610, 3781, 3952, 4123, 4294, 4465, 4636, 4807, 4978, 5149, 5320, 5491, 5662, 5833, 6004, 6175, 6346, 6517, 6688
Offset: 0
A156145
Number of partitions of 9*n-8 into parts having in decimal representation digital root 1.
Original entry on oeis.org
1, 2, 3, 5, 8, 13, 20, 31, 46, 68, 98, 140, 195, 271, 370, 502, 673, 897, 1183, 1553, 2021, 2618, 3367, 4312, 5489, 6961, 8782, 11039, 13815, 17232, 21409, 26519, 32732, 40288, 49433, 60496, 73824, 89872, 109125, 132204, 159785, 192715, 231921
Offset: 1
A163652
Triangle read by rows where T(n,m)=2*m*n + m + n + 6.
Original entry on oeis.org
10, 13, 18, 16, 23, 30, 19, 28, 37, 46, 22, 33, 44, 55, 66, 25, 38, 51, 64, 77, 90, 28, 43, 58, 73, 88, 103, 118, 31, 48, 65, 82, 99, 116, 133, 150, 34, 53, 72, 91, 110, 129, 148, 167, 186, 37, 58, 79, 100, 121, 142, 163, 184, 205, 226, 40, 63, 86, 109, 132, 155, 178
Offset: 1
Triangle begins:
10;
13, 18;
16, 23, 30;
19, 28, 37, 46;
22, 33, 44, 55, 66;
25, 38, 51, 64, 77, 90;
28, 43, 58, 73, 88, 103, 118;
31, 48, 65, 82, 99, 116, 133, 150;
34, 53, 72, 91, 110, 129, 148, 167, 186;
37, 58, 79, 100, 121, 142, 163, 184, 205, 226;
40, 63, 86, 109, 132, 155, 178, 201, 224, 247, 270;
etc.
-
[2*n*k + n + k + 6: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
t[n_,k_]:=2 n*k + n + k + 6; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
A211822
Nonprime numbers with all divisors with additive digital root of 1.
Original entry on oeis.org
1, 361, 703, 1369, 1387, 2071, 2413, 2701, 3097, 3439, 3781, 4033, 4699, 5149, 5329, 5833, 6031, 6697, 6859, 7201, 7363, 7543, 7957, 8227, 9253, 9271, 9937, 10027, 10279, 10963, 11359, 11647, 11881, 11899, 11989, 13213, 13357
Offset: 1
Number 6859 with divisors 1, 19, 361, 6859 is in sequence because all divisors have additive digital root of 1.
-
filter:= n -> not isprime(n) and numtheory:-factorset(n) mod 9 = {1}:
filter(1):= true:
select(filter, [seq(i,i=1..20000,9)]); # Robert Israel, May 10 2020
-
(* First run the program for A211821 *) Select[A211821, Not[PrimeQ[#]] &] (* Alonso del Arte, May 02 2012 *)
A211823
Numbers k such that 9*k+1 are numbers with all divisors with additive digital root = 1.
Original entry on oeis.org
0, 2, 4, 8, 12, 14, 18, 20, 22, 30, 34, 40, 42, 44, 48, 54, 58, 60, 64, 68, 70, 78, 82, 84, 90, 92, 98, 102, 104, 110, 112, 118, 124, 128, 130, 142, 144, 152, 154, 158, 162, 170, 172, 174, 180, 184, 188, 194, 198, 200, 208, 222, 224, 228, 230, 232, 238, 240, 242
Offset: 1
Number k = 40 is in sequence because number 9*40 + 1 = 361 is number with all divisors (1, 19, 361) with additive digital root = 1.
-
adrQ[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]==1; Select[Range[ 0,250],AllTrue[Divisors[9#+1],adrQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 27 2020 *)
A326833
Numbers whose sum of digits is a power of 10.
Original entry on oeis.org
1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 208, 217, 226, 235, 244, 253, 262, 271, 280, 307, 316, 325, 334, 343, 352, 361, 370, 406, 415, 424, 433, 442, 451, 460, 505, 514, 523, 532, 541, 550, 604, 613
Offset: 1
-
q:= n-> (m-> m>0 and m=10^ilog[10](m))(add(i, i=convert(n, base, 10))):
select(q, [$1..1000])[];
-
isok(n) = my(s=sumdigits(n), k); (s==1) || (s==10) || (ispower(s,,&k) && (k==10)); \\ Michel Marcus, Oct 21 2019
A172178
a(n) = 99*n + 1.
Original entry on oeis.org
1, 100, 199, 298, 397, 496, 595, 694, 793, 892, 991, 1090, 1189, 1288, 1387, 1486, 1585, 1684, 1783, 1882, 1981, 2080, 2179, 2278, 2377, 2476, 2575, 2674, 2773, 2872, 2971, 3070, 3169, 3268, 3367, 3466, 3565, 3664, 3763, 3862, 3961, 4060, 4159, 4258
Offset: 0
-
[99*n+1: n in [0..50]]; // G. C. Greubel, Apr 26 2022
-
99*Range[0, 50] + 1 (* or *) LinearRecurrence[{2, -1}, {1, 100}, 50] (* Harvey P. Dale, Apr 09 2012 *)
-
[99*n+1 for n in (0..50)] # G. C. Greubel, Apr 26 2022
A179955
Numbers whose sum of digits is 10 and which contain no 0 digits.
Original entry on oeis.org
19, 28, 37, 46, 55, 64, 73, 82, 91, 118, 127, 136, 145, 154, 163, 172, 181, 217, 226, 235, 244, 253, 262, 271, 316, 325, 334, 343, 352, 361, 415, 424, 433, 442, 451, 514, 523, 532, 541, 613, 622, 631, 712, 721, 811, 1117, 1126, 1135, 1144, 1153, 1162, 1171
Offset: 1
19 is an element of the list because 1+9 = 10.
109 is not an element because it contains a 0.
-
with(combinat):
sort(select(y->y<>10, map(x->parse(cat(x[])), map(p->permute(p)[], partition(10)))))[]; # Alois P. Heinz, Sep 24 2013
-
Reap[For[n=1; k=1, n <= 2*10^9, n++, id = IntegerDigits[n]; If[Total[id] == 10 && FreeQ[id, 0], Print["a(", k, ") = ", n]; Sow[n]; k++]]][[2, 1]] (* Jean-François Alcover, Jan 08 2016 *)
sd10Q[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&Total[idn]==10]; Select[Range[1200],sd10Q] (* Harvey P. Dale, Oct 17 2016 *)
Comments