cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A050489 a(n) = C(n)*(10*n + 1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 11, 42, 155, 574, 2142, 8052, 30459, 115830, 442442, 1696396, 6525246, 25169452, 97319900, 377096040, 1463921595, 5692584870, 22169259090, 86452604700, 337547269290, 1319388204420, 5162382341220, 20217646564440, 79246770753150, 310866899505084
Offset: 0

Views

Author

Barry E. Williams, Dec 27 1999

Keywords

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=10 of A330965.

Programs

Formula

-(n+1)*(10*n-9)*a(n) + 2*(10*n+1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2014
From Stefano Spezia, Feb 16 2020: (Start)
O.g.f.: 2*(1 + sqrt(1 - 4*x) + 16*x)/((1 + sqrt(1 - 4*x))^2*sqrt(1 - 4*x)).
E.g.f.: exp(2*x)*(I_0(2*x) + 9*I_1(2*x)), where I_n(x) is the modified Bessel function of the first kind.
(End)
G.f.: (9 - 16*x - 9*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Amiram Eldar, Jul 08 2023
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 9*binomial(2*n, n-1) = A000984(n) + 9*A001791(n).
a(n) ~ 4^n * 10/sqrt(Pi*n). (End)

Extensions

Corrected and extended by Harvey P. Dale, Jul 19 2011

A083678 Numbers m = d_1 d_2 ... d_k (in base 10) with properties that k is even and d_i + d_{k+1-i} = 10 for all i.

Original entry on oeis.org

19, 28, 37, 46, 55, 64, 73, 82, 91, 1199, 1289, 1379, 1469, 1559, 1649, 1739, 1829, 1919, 2198, 2288, 2378, 2468, 2558, 2648, 2738, 2828, 2918, 3197, 3287, 3377, 3467, 3557, 3647, 3737, 3827, 3917, 4196, 4286, 4376, 4466, 4556, 4646, 4736, 4826, 4916
Offset: 1

Views

Author

Zak Seidov Jun 15 2003

Keywords

Comments

The two-digit terms here occur in many sequences, e.g., A066686, A081926, A017173, A030108, A043457, A052224, A061388, A084364.

Examples

			1469 and 6284 are members because 1+9=4+6=10 and 6+4=2+8=10.
		

Crossrefs

Programs

  • Mathematica
    ok10Q[n_]:=Module[{idn=IntegerDigits[n]},idn[[1]]+idn[[4]]==idn[[2]]+idn[[3]]==10]; Join[ Select[ Range[10,99],Total[IntegerDigits[#]]==10&],Select[Range[1000,9999],ok10Q]] (* Harvey P. Dale, Oct 14 2023 *)
  • PARI
    isok(n) = {digs = digits(n); if (#digs % 2 == 0, for (i = 1, #digs/2, if ((digs[i] + digs[#digs+1-i]) ! = 10, return (0));); return (1);); return (0);} \\ Michel Marcus, Oct 05 2013

A139619 a(n) = 171*n + 19.

Original entry on oeis.org

19, 190, 361, 532, 703, 874, 1045, 1216, 1387, 1558, 1729, 1900, 2071, 2242, 2413, 2584, 2755, 2926, 3097, 3268, 3439, 3610, 3781, 3952, 4123, 4294, 4465, 4636, 4807, 4978, 5149, 5320, 5491, 5662, 5833, 6004, 6175, 6346, 6517, 6688
Offset: 0

Views

Author

Omar E. Pol, May 21 2008

Keywords

Comments

Numbers of the 19th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 19th column in the square array A057145.

Crossrefs

Programs

Formula

From Chai Wah Wu, Apr 14 2017: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 1.
G.f.: (152*x + 19)/(x - 1)^2. (End)
From Elmo R. Oliveira, Apr 11 2024: (Start)
E.g.f.: 19*exp(x)*(1 + 9*x).
a(n) = 19*A017173(n) = 19*(A051682(n+1) - A051682(n)). (End)

A156145 Number of partitions of 9*n-8 into parts having in decimal representation digital root 1.

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 20, 31, 46, 68, 98, 140, 195, 271, 370, 502, 673, 897, 1183, 1553, 2021, 2618, 3367, 4312, 5489, 6961, 8782, 11039, 13815, 17232, 21409, 26519, 32732, 40288, 49433, 60496, 73824, 89872, 109125, 132204, 159785, 192715, 231921
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 05 2009

Keywords

Comments

A010888(9*n-8) = 1;
record values in A156144: a(n)=A156144(A017173(n-1)).

A163652 Triangle read by rows where T(n,m)=2*m*n + m + n + 6.

Original entry on oeis.org

10, 13, 18, 16, 23, 30, 19, 28, 37, 46, 22, 33, 44, 55, 66, 25, 38, 51, 64, 77, 90, 28, 43, 58, 73, 88, 103, 118, 31, 48, 65, 82, 99, 116, 133, 150, 34, 53, 72, 91, 110, 129, 148, 167, 186, 37, 58, 79, 100, 121, 142, 163, 184, 205, 226, 40, 63, 86, 109, 132, 155, 178
Offset: 1

Views

Author

Vincenzo Librandi, Aug 02 2009

Keywords

Comments

The numbers 2*T(n,m)-11 = (2*n+1)*(2*m+1) are not prime, and 2*T(n,n) = (2n+1)^2.
First column: A112414, second column: A016885, third column: A017005, fourth column: A017173. - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
  10;
  13, 18;
  16, 23, 30;
  19, 28, 37, 46;
  22, 33, 44, 55,  66;
  25, 38, 51, 64,  77,  90;
  28, 43, 58, 73,  88,  103, 118;
  31, 48, 65, 82,  99,  116, 133, 150;
  34, 53, 72, 91,  110, 129, 148, 167, 186;
  37, 58, 79, 100, 121, 142, 163, 184, 205, 226;
  40, 63, 86, 109, 132, 155, 178, 201, 224, 247, 270;
  etc.
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k + 6: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k +  6; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)

Formula

T(n,m) = A154685(n,m)+2 = A163657(n,m)-2. [R. J. Mathar, Oct 22 2009]

Extensions

Comment clarified by R. J. Mathar, Oct 22 2009

A211822 Nonprime numbers with all divisors with additive digital root of 1.

Original entry on oeis.org

1, 361, 703, 1369, 1387, 2071, 2413, 2701, 3097, 3439, 3781, 4033, 4699, 5149, 5329, 5833, 6031, 6697, 6859, 7201, 7363, 7543, 7957, 8227, 9253, 9271, 9937, 10027, 10279, 10963, 11359, 11647, 11881, 11899, 11989, 13213, 13357
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2012

Keywords

Comments

Complement of A061237 (prime numbers == 1 (mod 9)) with respect to A211821.

Examples

			Number 6859 with divisors 1, 19, 361, 6859 is in sequence because all divisors have additive digital root of 1.
		

Crossrefs

Programs

  • Maple
    filter:= n -> not isprime(n) and numtheory:-factorset(n) mod 9 = {1}:
    filter(1):= true:
    select(filter, [seq(i,i=1..20000,9)]); # Robert Israel, May 10 2020
  • Mathematica
    (* First run the program for A211821 *) Select[A211821, Not[PrimeQ[#]] &] (* Alonso del Arte, May 02 2012 *)

A211823 Numbers k such that 9*k+1 are numbers with all divisors with additive digital root = 1.

Original entry on oeis.org

0, 2, 4, 8, 12, 14, 18, 20, 22, 30, 34, 40, 42, 44, 48, 54, 58, 60, 64, 68, 70, 78, 82, 84, 90, 92, 98, 102, 104, 110, 112, 118, 124, 128, 130, 142, 144, 152, 154, 158, 162, 170, 172, 174, 180, 184, 188, 194, 198, 200, 208, 222, 224, 228, 230, 232, 238, 240, 242
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2012

Keywords

Comments

Numbers of form 9*k+1 with all divisors with digital root = 1 is in A211821.
Supersequence of A024906 (numbers n such that 9*n+1 is prime).

Examples

			Number k = 40 is in sequence because number 9*40 + 1 = 361 is number with all divisors (1, 19, 361) with additive digital root = 1.
		

Crossrefs

Programs

  • Mathematica
    adrQ[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]==1; Select[Range[ 0,250],AllTrue[Divisors[9#+1],adrQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 27 2020 *)

Extensions

Corrected (230 inserted) by Harvey P. Dale, Aug 27 2020

A326833 Numbers whose sum of digits is a power of 10.

Original entry on oeis.org

1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 208, 217, 226, 235, 244, 253, 262, 271, 280, 307, 316, 325, 334, 343, 352, 361, 370, 406, 415, 424, 433, 442, 451, 460, 505, 514, 523, 532, 541, 550, 604, 613
Offset: 1

Views

Author

Alois P. Heinz, Oct 20 2019

Keywords

Crossrefs

Subsequence of A326806.

Programs

  • Maple
    q:= n-> (m-> m>0 and m=10^ilog[10](m))(add(i, i=convert(n, base, 10))):
    select(q, [$1..1000])[];
  • PARI
    isok(n) = my(s=sumdigits(n), k); (s==1) || (s==10) || (ispower(s,,&k) && (k==10)); \\ Michel Marcus, Oct 21 2019

A172178 a(n) = 99*n + 1.

Original entry on oeis.org

1, 100, 199, 298, 397, 496, 595, 694, 793, 892, 991, 1090, 1189, 1288, 1387, 1486, 1585, 1684, 1783, 1882, 1981, 2080, 2179, 2278, 2377, 2476, 2575, 2674, 2773, 2872, 2971, 3070, 3169, 3268, 3367, 3466, 3565, 3664, 3763, 3862, 3961, 4060, 4159, 4258
Offset: 0

Views

Author

Mark Dols, Jan 28 2010

Keywords

Crossrefs

Cf. A017173.

Programs

  • Magma
    [99*n+1: n in [0..50]]; // G. C. Greubel, Apr 26 2022
    
  • Mathematica
    99*Range[0, 50] + 1 (* or *) LinearRecurrence[{2, -1}, {1, 100}, 50] (* Harvey P. Dale, Apr 09 2012 *)
  • SageMath
    [99*n+1 for n in (0..50)] # G. C. Greubel, Apr 26 2022

Formula

a(n) = a(n-1) + 99 with a(1) = 1.
a(0) = 1, a(1) = 100, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, Apr 09 2012
From G. C. Greubel, Apr 26 2022: (Start)
G.f.: (1 + 98*x)/(1-x)^2.
E.g.f.: (1 + 99*x)*exp(x). (End)

Extensions

Offset corrected by Harvey P. Dale, Apr 09 2012

A179955 Numbers whose sum of digits is 10 and which contain no 0 digits.

Original entry on oeis.org

19, 28, 37, 46, 55, 64, 73, 82, 91, 118, 127, 136, 145, 154, 163, 172, 181, 217, 226, 235, 244, 253, 262, 271, 316, 325, 334, 343, 352, 361, 415, 424, 433, 442, 451, 514, 523, 532, 541, 613, 622, 631, 712, 721, 811, 1117, 1126, 1135, 1144, 1153, 1162, 1171
Offset: 1

Views

Author

Dominick Cancilla, Aug 03 2010

Keywords

Comments

Subset of A052224.
Finite sequence. Highest member is 1111111111.
Contribution from Zak Seidov, Aug 06 2010, as corrected by D. S. McNeil: There are exactly 511 terms.

Examples

			19 is an element of the list because 1+9 = 10.
109 is not an element because it contains a 0.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    sort(select(y->y<>10, map(x->parse(cat(x[])), map(p->permute(p)[], partition(10)))))[]; # Alois P. Heinz, Sep 24 2013
  • Mathematica
    Reap[For[n=1; k=1, n <= 2*10^9, n++, id = IntegerDigits[n]; If[Total[id] == 10 && FreeQ[id, 0], Print["a(", k, ") = ", n]; Sow[n]; k++]]][[2, 1]] (* Jean-François Alcover, Jan 08 2016 *)
    sd10Q[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&Total[idn]==10]; Select[Range[1200],sd10Q] (* Harvey P. Dale, Oct 17 2016 *)
Previous Showing 21-30 of 44 results. Next