cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A017198 a(n) = (9*n + 3)^2.

Original entry on oeis.org

9, 144, 441, 900, 1521, 2304, 3249, 4356, 5625, 7056, 8649, 10404, 12321, 14400, 16641, 19044, 21609, 24336, 27225, 30276, 33489, 36864, 40401, 44100, 47961, 51984, 56169, 60516, 65025, 69696
Offset: 0

Views

Author

Keywords

Comments

a(n) = A000290(A017197(n)) = A156677(n+2) + A017305(n). - Reinhard Zumkeller, Jul 13 2010

Programs

Formula

a(0)=9, a(1)=144, a(2)=441, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 25 2015
G.f.: (-9 - 117*x - 36*x^2) / (x-1)^3. - R. J. Mathar, Jul 14 2016

A031913 a(n) = prime(9*n - 6).

Original entry on oeis.org

5, 37, 73, 113, 167, 223, 269, 317, 379, 433, 487, 557, 607, 659, 727, 787, 853, 911, 977, 1033, 1093, 1163, 1229, 1291, 1367, 1439, 1489, 1559, 1613, 1693, 1753, 1831, 1901, 1987, 2039, 2111, 2179, 2267, 2333, 2383, 2447, 2543, 2621
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ NthPrime(9*n-6): n in [1..1000] ]; // Vincenzo Librandi, Apr 09 2011
    
  • Mathematica
    Prime[9Range[50]-6] (* Harvey P. Dale, Jul 27 2011 *)
  • SageMath
    [nth_prime(9*n-6) for n in range(1,61)] # G. C. Greubel, Feb 18 2024

Formula

a(n) = A000040(A017197(n-1)). - G. C. Greubel, Feb 18 2024

A145910 a(n) = (1 + 3*n)*(4 + 3*n)/2.

Original entry on oeis.org

2, 14, 35, 65, 104, 152, 209, 275, 350, 434, 527, 629, 740, 860, 989, 1127, 1274, 1430, 1595, 1769, 1952, 2144, 2345, 2555, 2774, 3002, 3239, 3485, 3740, 4004, 4277, 4559, 4850, 5150, 5459, 5777, 6104, 6440, 6785, 7139, 7502, 7874
Offset: 0

Views

Author

Paul Curtz, Oct 24 2008

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-1) + 3*(3*n+1) = a(n-1) + A017197(n+1).
G.f.: (-2 - 8*x + x^2)/(x-1)^3. - R. J. Mathar, Jan 06 2011
a(n) = A144449(n)/8.
a(n) = 2*a(n-1) - a(n-2) + 9.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 2/3.
Sum_{n>=0} (-1)^n/a(n) = 4*Pi/(9*sqrt(3)) + 4*log(2)/9 - 2/3. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(4 + 24*x + 9*x^2)/2.
a(n) = A085001(n)/2. (End)

Extensions

Terms a(11)-a(42) from Vincenzo Librandi, Nov 17 2009

A154266 a(n) = 27*n + 12.

Original entry on oeis.org

12, 39, 66, 93, 120, 147, 174, 201, 228, 255, 282, 309, 336, 363, 390, 417, 444, 471, 498, 525, 552, 579, 606, 633, 660, 687, 714, 741, 768, 795, 822, 849, 876, 903, 930, 957, 984, 1011, 1038, 1065, 1092, 1119, 1146, 1173, 1200, 1227, 1254, 1281, 1308, 1335
Offset: 0

Views

Author

Vincenzo Librandi, Jan 06 2009

Keywords

Comments

The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as A154295(n+1)^2 - A154262(n+1)*a(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012

Crossrefs

Programs

Formula

From R. J. Mathar, Jan 05 2011: (Start)
G.f.: 3*(4 + 5*x)/(1-x)^2.
a(n) = 3*A017209(n). (End)
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 02 2012
E.g.f.: (27*x + 12)*exp(x). - G. C. Greubel, Sep 08 2016
a(n) = A017197(3*n+1) = A008585(9*n+4). - Elmo R. Oliveira, Apr 12 2025

Extensions

119 replaced by 1119 - R. J. Mathar, Jan 07 2009

A354984 Numbers that are 3 * prime powers congruent to 1 (mod 3).

Original entry on oeis.org

12, 21, 39, 48, 57, 75, 93, 111, 129, 147, 183, 192, 201, 219, 237, 291, 309, 327, 363, 381, 417, 453, 471, 489, 507, 543, 579, 597, 633, 669, 687, 723, 768, 813, 831, 849, 867, 921, 939, 993, 1011, 1029, 1047, 1083, 1101, 1119, 1137, 1191, 1227, 1263, 1299, 1317, 1371, 1389, 1461, 1497, 1569, 1587, 1623, 1641, 1713
Offset: 1

Views

Author

Antti Karttunen, Jun 15 2022

Keywords

Comments

Numbers k of the form 9m+3 such that k/3 = p^k, with p a prime and k >= 1.

Crossrefs

Intersection of A017197 and 3*A246655.
Cf. A137827, A354983 (characteristic function).
Row 3 of A354930 (conjectured).

Programs

  • Mathematica
    Select[Range[2000], Mod[#, 9] == 3 && PrimePowerQ[#/3] &] (* Amiram Eldar, Jun 15 2022 *)
  • PARI
    A354983(n) = ((3==(n%9)) && isprimepower(n/3));
    isA354984(n) = A354983(n);

Formula

a(n) = 3 * A137827(n).

A264938 a(n) = n*(2*n-1) + floor(n/3).

Original entry on oeis.org

0, 1, 6, 16, 29, 46, 68, 93, 122, 156, 193, 234, 280, 329, 382, 440, 501, 566, 636, 709, 786, 868, 953, 1042, 1136, 1233, 1334, 1440, 1549, 1662, 1780, 1901, 2026, 2156, 2289, 2426, 2568, 2713, 2862, 3016, 3173, 3334, 3500, 3669, 3842, 4020, 4201, 4386, 4576, 4769
Offset: 0

Views

Author

Paul Curtz, Nov 29 2015

Keywords

Comments

Sequence extended to the left:
..., 133, 102, 76, 53, 34, 20, 9, 2, 0, 1, 6, 16, 29, 46, 68, 93, ...
Conjecture: after 0, a(n) provides the first bisection of A264041.
Conjecture: 2, 9, 20, 34, 53, 76, 102, 133, ... is A248121.

Crossrefs

Programs

  • Magma
    [n*(2*n-1)+Floor(n/3): n in [0..60]]; // Vincenzo Librandi, Dec 02 2015
  • Maple
    seq(n*(2*n-1) + floor(n/3), n=0..100); # Robert Israel, Dec 02 2015
  • Mathematica
    Table[n (2 n - 1) + Floor[n/3], {n, 0, 50}] (* Vincenzo Librandi, Dec 02 2015 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,6,16,29},60] (* Harvey P. Dale, Oct 13 2020 *)
  • PARI
    concat(0, Vec(x*(1+x)^2*(1+2*x)/((1-x)^3*(1+x+x^2)) + O(x^100))) \\ Colin Barker, Dec 02 2015
    
  • PARI
    a(n) = n*(2*n-1) + n\3; \\ Altug Alkan, Dec 01 2015
    

Formula

a(n) = a(n-3) + 12*n - 20 for n>2.
From Colin Barker, Dec 02 2015: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4.
G.f.: x*(1+x)^2*(1+2*x) / ((1-x)^3*(1+x+x^2)).
(End)
a(n) = A000217(2n-1) + A002264(n).
a(n) + a(-n) = 3*A256320(n).
a(n +8) - a(n -7) = 20*A016777(n).
a(n+16) - a(n-14) = 20*A016969(n).
a(n+23) - a(n-22) = 20*A017197(n).
a(n+31) - a(n-29) = 20*A017641(n).
Generalization of the previous four formulas:
a(n+30*k +8) - a(n-30*k -7) = 20*(4*k+1)*(3*n+1).
a(n+30*k+16) - a(n-30*k-14) = 20*(2*k+1)*(6*n+5).
a(n+30*k+24) - a(n-30*k-21) = 20*(4*k+3)*(3*n+4).
a(n+30*k+32) - a(n-30*k-28) = 20*(2*k+2)*(6*n+11).
E.g.f.: (6*x^2+4*x-1)*exp(x)/3 + (cos(sqrt(3)*x/2)/3 +sqrt(3)*sin(sqrt(3)*x/2)/9)*exp(-x/2). - Robert Israel, Dec 02 2015

Extensions

Edited by Bruno Berselli, Dec 01 2015

A304504 a(n) = 3*(3*n+1)*(9*n+8)/2.

Original entry on oeis.org

12, 102, 273, 525, 858, 1272, 1767, 2343, 3000, 3738, 4557, 5457, 6438, 7500, 8643, 9867, 11172, 12558, 14025, 15573, 17202, 18912, 20703, 22575, 24528, 26562, 28677, 30873, 33150, 35508, 37947, 40467, 43068, 45750, 48513, 51357, 54282, 57288, 60375, 63543, 66792
Offset: 0

Views

Author

Emeric Deutsch, May 13 2018

Keywords

Comments

The second Zagreb index of the single-defect 3-gonal nanocone CNC(3,n) (see definition in the Doslic et al. reference, p. 27).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of CNC(3,n) is M(CNC(3,n); x,y) = 3*x^2*y^2 + 6*n*x^2*y^3 + 3*n*(3*n+1)*x^3*y^3/2.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.
8*a(n) + 25 is a square. - Bruno Berselli, May 14 2018

Crossrefs

Programs

  • Maple
    seq((1/2)*(3*(9*n+8))*(3*n+1), n = 0 .. 40);
  • PARI
    Vec(3*(4 + 22*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 3*(4 + 22*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 3*exp(x)*(8 + 60*x + 27*x^2)/2.
a(n) = A017197(n)*A017257(n)/2. (End)

A017199 a(n) = (9*n + 3)^3.

Original entry on oeis.org

27, 1728, 9261, 27000, 59319, 110592, 185193, 287496, 421875, 592704, 804357, 1061208, 1367631, 1728000, 2146689, 2628072, 3176523, 3796416, 4492125, 5268024, 6128487, 7077888, 8120601, 9261000, 10503459, 11852352, 13312053, 14886936, 16581375, 18399744, 20346417
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(9*n+3)^3: n in [0..30]]; // Vincenzo Librandi, Jul 23 2011
  • Mathematica
    (9Range[0,30]+3)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{27,1728,9261,27000},30] (* Harvey P. Dale, Jun 20 2024 *)

Formula

G.f.: 27*(1 + 60*x + 93*x^2 + 8*x^3)/ (x-1)^4. - R. J. Mathar, Aug 01 2014
a(n) = 27*A016779(n). - R. J. Mathar, Aug 01 2014
From Amiram Eldar, Oct 03 2024: (Start)
a(n) = A017197(n)^3.
Sum_{n>=0} 1/a(n) = 2*Pi^3/(2187*sqrt(3)) + 13*zeta(3)/729. (End)

A017200 a(n) = (9*n+3)^4.

Original entry on oeis.org

81, 20736, 194481, 810000, 2313441, 5308416, 10556001, 18974736, 31640625, 49787136, 74805201, 108243216, 151807041, 207360000, 276922881, 362673936, 466948881, 592240896, 741200625, 916636176
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000583 (n^4), A016780 ((3n+1)^4), A017197 (9n+3).

Programs

Formula

a(n) = A000583(A017197(n)). - Michel Marcus, Nov 06 2015
a(n) = 81*A016780(n). - Michel Marcus, Nov 06 2015
From Ilya Gutkovskiy, Jun 16 2016: (Start)
G.f.: 81*(1 + 251*x + 1131*x^2 + 545*x^3 + 16*x^4)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)

A017201 a(n) = (9*n + 3)^5.

Original entry on oeis.org

243, 248832, 4084101, 24300000, 90224199, 254803968, 601692057, 1252332576, 2373046875, 4182119424, 6956883693, 11040808032, 16850581551, 24883200000, 35723051649, 50049003168, 68641485507, 92389579776, 122298103125, 159494694624, 205236901143, 260919263232
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(9*n+3)^5: n in [0..30]]; // Vincenzo Librandi, Jul 23 2011
  • Mathematica
    (9*Range[0,20]+3)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{243,248832,4084101,24300000,90224199,254803968},20] (* Harvey P. Dale, Jul 27 2019 *)

Formula

G.f.: 243*(1 + 1018*x + 10678*x^2 + 14498*x^3 + 2933*x^4 + 32*x^5)/(x-1)^6. - R. J. Mathar, Jul 14 2016
From Amiram Eldar, Oct 03 2024: (Start)
a(n) = A017197(n)^5 = 3^5 * A016781(n).
Sum_{n>=0} 1/a(n) = 2*Pi^5/(177147*sqrt(3)) + 121*zeta(5)/59049. (End)
Previous Showing 11-20 of 26 results. Next