cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A139267 Twice octagonal numbers: 2*n*(3*n-2).

Original entry on oeis.org

0, 2, 16, 42, 80, 130, 192, 266, 352, 450, 560, 682, 816, 962, 1120, 1290, 1472, 1666, 1872, 2090, 2320, 2562, 2816, 3082, 3360, 3650, 3952, 4266, 4592, 4930, 5280, 5642, 6016, 6402, 6800, 7210, 7632, 8066, 8512, 8970, 9440, 9922
Offset: 0

Views

Author

Omar E. Pol, May 14 2008, May 19 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 2,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033580 in the same spiral. - Omar E. Pol, Sep 09 2011

Crossrefs

Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=12).

Programs

Formula

a(n) = 2*A000567(n) = 6*n^2 - 4*n = 2*n*(3*n - 2).
a(n) = a(n-1) + 12*n - 10, with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: x*(2+10*x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
After 0, a(n) = Sum_{i=0..n-1} (12*i + 2). - Bruno Berselli, Sep 11 2013
E.g.f.: 2*x*(1 + 3*x)*exp(x). - G. C. Greubel, Sep 18 2019

A017581 a(n) = 12*n + 5.

Original entry on oeis.org

5, 17, 29, 41, 53, 65, 77, 89, 101, 113, 125, 137, 149, 161, 173, 185, 197, 209, 221, 233, 245, 257, 269, 281, 293, 305, 317, 329, 341, 353, 365, 377, 389, 401, 413, 425, 437, 449, 461, 473, 485, 497, 509, 521, 533, 545, 557, 569, 581, 593, 605, 617, 629
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(71).
A089911(2*a(n)) = 7. - Reinhard Zumkeller, Jul 05 2013
Equivalently, intersection of A016813 and A016789. - Bruno Berselli, Jan 24 2018

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2) for n>1, a(0)=5, a(1)=17. - Vincenzo Librandi, Jun 08 2011
G.f.: x*(5 + 7*x)/(1 - x)^2. - Wolfdieter Lang, Jul 04 2023
E.g.f.: exp(x)*(5 + 12*x). - Stefano Spezia, Feb 21 2024
a(n) = A016969(2*n) = A016789(4*n+1). - Elmo R. Oliveira, Apr 10 2025

A072065 Define a "piece" to consist of 3 mutually touching pennies welded together to form a triangle; sequence gives side lengths of triangles that can be made from such pieces.

Original entry on oeis.org

0, 2, 9, 11, 12, 14, 21, 23, 24, 26, 33, 35, 36, 38, 45, 47, 48, 50, 57, 59, 60, 62, 69, 71, 72, 74, 81, 83, 84, 86, 93, 95, 96, 98, 105, 107, 108, 110, 117, 119, 120, 122, 129, 131, 132, 134, 141, 143, 144, 146, 153, 155, 156, 158, 165, 167, 168, 170, 177, 179, 180
Offset: 1

Views

Author

Jim McCann (jmccann(AT)umich.edu), Aug 04 2002

Keywords

Comments

The "piece" in question is also called a "tribone" [Ardila and Stanley]. - N. J. A. Sloane, Feb 27 2014

Examples

			A possible side-9 arrangement:
          A
         A A
        B B C
       D B C C
      D D E E F
     G H H E F F
    G G H I I J J
   K L L M I N J O
  K K L M M N N O O
		

Crossrefs

Union of A008594, A017545, A017629 and A017653.

Programs

  • Haskell
    a072065 n = a072065_list !! n
    a072065_list = filter ((`elem` [0,2,9,11]) . (`mod` 12)) [0..]
    -- Reinhard Zumkeller, Jan 09 2013
    
  • Maple
    f:=r-> {seq(12*i+r,i=0..100)}; t1:= f(0) union f(2) union f(9) union f(11); t2:=sort(convert(t1,list)); # N. J. A. Sloane, Jul 04 2011
  • Mathematica
    Select[Range[0,200],MemberQ[{0,2,9,11},Mod[#,12]]&] (* Harvey P. Dale, Dec 15 2011 *)
    LinearRecurrence[{1,0,0,1,-1},{0,2,9,11,12},70] (* Harvey P. Dale, Jan 30 2015 *)
  • PARI
    concat(0, Vec(x^2*(2+7*x+2*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)) + O(x^100))) \\ Colin Barker, Dec 12 2015

Formula

A number n is in the sequence iff n == 0, 2, 9 or 11 (mod 12). See Conway-Lagarias or the Sillke link. - Sascha Kurz, Mar 04 2003
a(1)=0, a(2)=2, a(3)=9, a(4)=11, a(5)=12, a(n) = a(n-1)+a(n-4)-a(n-5). - Harvey P. Dale, Jan 30 2015
From Colin Barker, Dec 12 2015: (Start)
a(n) = (3/4+(3*i)/4)*(i^n-i*(-i)^n)-(-1)^n/2+3*(n+1)-5 where i = sqrt(-1).
G.f.: x^2*(2+7*x+2*x^2+x^3) / ((1-x)^2*(1+x)*(1+x^2)). (End)
E.g.f.: (2 + 3*cos(x) + (6*x - 5)*cosh(x) - 3*sin(x) + (6*x - 3)*sinh(x))/2. - Stefano Spezia, May 05 2022
a(n) = (6*n-4-(-1)^n+3*(-1)^((2*n+1-(-1)^n)/4))/2. - Wesley Ivan Hurt, Nov 09 2023

Extensions

Offset corrected by Reinhard Zumkeller, Jan 09 2013

A332511 Numbers k such that phi(k) == 2 (mod 12), where phi is the Euler totient function (A000010).

Original entry on oeis.org

3, 4, 6, 121, 242, 529, 1058, 2209, 3481, 4418, 5041, 6889, 6962, 10082, 11449, 13778, 14641, 17161, 22898, 27889, 29282, 32041, 34322, 36481, 51529, 55778, 57121, 63001, 64082, 69169, 72962, 96721, 103058, 114242, 120409, 126002, 128881, 138338, 146689, 175561
Offset: 1

Views

Author

Amiram Eldar, Feb 14 2020

Keywords

Comments

Dence and Dence noted that the values of phi(k) congruent to 2 (mod 12) are sparse compared to the other possible even values. For example, for k <= 10^4 there only 10 values of phi(k) congruent to 2 (mod 12), compared to 6114, 1650, 511, 1233, and 476 values congruent to 0, 4, 6, 8, and 10 (mod 12), respectively. They proved that the asymptotic density of this sequence is 0 by showing that the only terms above 6 are of the form p^e and 2*p^e with p == 11 (mod 12) a prime and e even.
Dence and Pomerance showed that the asymptotic number of the terms below x is ~ (1/2 + 1/(2*sqrt(2)))*sqrt(x)/log(x).

Examples

			121 is a term since phi(121) = 110 == 2 (mod 12).
		

Crossrefs

Cf. A000010, A017545, A201488 (coefficient in asymptotic formula), A332512, A332513, A332514, A332515, A332516.

Programs

  • Magma
    [k:k in [1..180000]| EulerPhi(k) mod 12 eq 2]; // Marius A. Burtea, Feb 14 2020
  • Mathematica
    Select[Range[2*10^5], Mod[EulerPhi[#], 12] == 2 &]

A063667 Number of solutions of phi(x) = 12n + 2.

Original entry on oeis.org

3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Labos Elemer, Aug 22 2001

Keywords

Examples

			In the range n=0..10000, only 18 invphi(12n + 2) sets are nonempty, always with 2 terms. E.g., n = 8034, a(8034) = 2 because 12*8034 + 2 = 96410 and invphi(96410) = {96721,193442}. - Original comment corrected by _Antti Karttunen_, Nov 07 2018
In the range n <= 100000, there are 48 nonzero values. - _Antti Karttunen_, Nov 07 2018
		

Crossrefs

Programs

Formula

a(n) = A014197(A017545(n)). - Antti Karttunen, Nov 07 2018

Extensions

Term a(0) = 3 prepended by Antti Karttunen, Nov 07 2018

A337609 Positive integers m such that A126286^k(m) = m for some positive integer k.

Original entry on oeis.org

2, 3, 14, 21, 26, 34, 38, 39, 50, 57, 62, 74, 75, 85, 86, 93, 94, 98, 110, 111, 118, 122, 129, 134, 142, 146, 147, 154, 158, 165, 170, 182, 183, 194, 201, 202, 206, 214, 218, 219, 230, 235, 237, 242, 254, 255, 266, 273, 274, 278, 286, 290, 291, 298, 302, 309
Offset: 1

Views

Author

Ely Golden, Oct 07 2020

Keywords

Comments

A126286^k(m) means apply A126286 to m k times.
Equivalently, the numbers that belong to a cycle under the map x -> A126286(x).
For any term m in this sequence, A126286(A126286(m)) = m.
Supersequence of A017545. Moreover, this sequence can be represented as an infinite union of arithmetic progressions.
2 and 3 are the only primes in this sequence.

Examples

			3 is a term since A126286(A126286(3)) = A126286(2) = 3.
		

Crossrefs

A017547 a(n) = (12n + 2)^3.

Original entry on oeis.org

8, 2744, 17576, 54872, 125000, 238328, 405224, 636056, 941192, 1331000, 1815848, 2406104, 3112136, 3944312, 4913000, 6028568, 7301384, 8741816, 10360232, 12167000, 14172488, 16387064, 18821096, 21484952, 24389000, 27543608
Offset: 0

Views

Author

Keywords

Programs

Formula

a(n) = A017545(n)^3. - Michel Marcus, Dec 28 2014
G.f.: (8 + 2712*x + 6648*x^2 + 1000*x^3)/(1-x)^4. - Vincenzo Librandi, Dec 28 2014

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 17 2010
Previous Showing 11-17 of 17 results.