cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A108998 Square array, read by antidiagonals, where row n equals the coordination sequence of B_n lattice, for n >= 0.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 8, 2, 0, 1, 18, 16, 2, 0, 1, 32, 74, 24, 2, 0, 1, 50, 224, 170, 32, 2, 0, 1, 72, 530, 768, 306, 40, 2, 0, 1, 98, 1072, 2562, 1856, 482, 48, 2, 0, 1, 128, 1946, 6968, 8130, 3680, 698, 56, 2, 0, 1, 162, 3264, 16394, 28320, 20082, 6432, 954, 64, 2, 0
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2005

Keywords

Comments

Compare with A108553, where row n equals the crystal ball sequence for D_n lattice.

Examples

			Square array begins:
  1,  0,    0,     0,     0,      0,      0,      0, ...
  1,  2,    2,     2,     2,      2,      2,      2, ...
  1,  8,   16,    24,    32,     40,     48,     56, ...
  1, 18,   74,   170,   306,    482,    698,    954, ...
  1, 32,  224,   768,  1856,   3680,   6432,  10304, ...
  1, 50,  530,  2562,  8130,  20082,  42130,  78850, ...
  1, 72, 1072,  6968, 28320,  85992, 214864, 467544, ...
  1, 98, 1946, 16394, 83442, 307314, 907018, ...
Product of the g.f. of row n and (1-x)^n generates the rows of triangle A109001:
  1;
  1,  1;
  1,  6,   1;
  1, 15,  23,    1;
  1, 28, 102,   60,    1;
  1, 45, 290,  402,  125,   1;
  1, 66, 655, 1596, 1167, 226, 1; ...
		

Crossrefs

Cf. A108999 (main diagonal), A109000 (antidiagonal sums), A109001, A022144 (row 2), A022145 (row 3), A022146 (row 4), A022147 (row 5), A022148 (row 6), A022149 (row 7), A022150 (row 8), A022151 (row 9), A022152 (row 10), A022153 (row 11), A022154 (row 12).

Programs

  • PARI
    T(n,k)=if(n<0 || k<0,0,sum(j=0,k, binomial(n+k-j-1,k-j)*(binomial(2*n+1,2*j)-2*n*binomial(n-1,j-1))))

Formula

T(n, k) = Sum_{j=0..k} C(n+k-j-1, k-j)*(C(2*n+1, 2*j)-2*n*C(n-1, j-1)) for n >= k >= 0.
G.f. for coordination sequence of B_n lattice: ((Sum_{i=0..n} binomial(2*n+1, 2*i)*z^i)-2*n*z*(1+z)^(n-1))/(1-z)^n. [Bacher et al.]

A201279 a(n) = 6n^2 + 10n + 5.

Original entry on oeis.org

5, 21, 49, 89, 141, 205, 281, 369, 469, 581, 705, 841, 989, 1149, 1321, 1505, 1701, 1909, 2129, 2361, 2605, 2861, 3129, 3409, 3701, 4005, 4321, 4649, 4989, 5341, 5705, 6081, 6469, 6869, 7281, 7705, 8141, 8589, 9049, 9521, 10005, 10501, 11009, 11529, 12061
Offset: 0

Views

Author

Keywords

Comments

Numbers n where 6n-5 is a square of a number type 6n-1.
Also sequence found by reading the line from 5, in the direction 5, 21,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Jul 18 2012
The spiral mentioned above naturally appears on a "graphene" like lattice (planar net 6^3). The opposite diagonal is A080859. - Yuriy Sibirmovsky, Oct 04 2016
First differences of A048395. - Leo Tavares, Nov 24 2021 [Corrected by Omar E. Pol, Dec 26 2021]

Crossrefs

Programs

  • Magma
    [6*n^2 + 10*n + 5: n in [0..60]]; // Vincenzo Librandi, Dec 01 2011
  • Mathematica
    LinearRecurrence[{3,-3,1},{5,21,49},50] (* Vincenzo Librandi, Dec 01 2011 *)
    Table[6 n^2 + 10 n + 5, {n, 0, 44}] (* or *)
    CoefficientList[Series[(1 + x) (5 + x)/(1 - x)^3, {x, 0, 44}], x] (* Michael De Vlieger, Oct 04 2016 *)
  • PARI
    a(n)=6*n^2+10*n+5 \\ Charles R Greathouse IV, Nov 29 2011
    

Formula

G.f.: (1+x)*(5+x)/(1-x)^3. - Colin Barker, Jan 09 2012
a(n) = 1 + A033579(n+1). - Omar E. Pol, Jul 18 2012
a(n) = (n+1)*A001844(n+1)-n*A001844(n). [Bruno Berselli, Jan 15 2013]
From Leo Tavares, Nov 24 2021: (Start)
a(n) = A003154(n+2) - A022144(n+1). See Diamond Frame Stars illustration.
a(n) = A016754(n) + A046092(n+1). (End)

A217873 a(n) = 4*n*(n^2 + 2)/3.

Original entry on oeis.org

0, 4, 16, 44, 96, 180, 304, 476, 704, 996, 1360, 1804, 2336, 2964, 3696, 4540, 5504, 6596, 7824, 9196, 10720, 12404, 14256, 16284, 18496, 20900, 23504, 26316, 29344, 32596, 36080, 39804, 43776, 48004, 52496, 57260, 62304, 67636, 73264, 79196, 85440, 92004
Offset: 0

Views

Author

M. F. Hasler, Oct 13 2012

Keywords

Comments

Occurs as 4th column in the table A142978 of figurate numbers for n-dimensional cross polytope.

Crossrefs

Programs

  • Magma
    [4*n*(n^2+2)/3: n in [0..45]]; // Vincenzo Librandi, Nov 08 2012
  • Mathematica
    Table[4n(n^2 + 2)/3, {n, 0, 39}] (* Alonso del Arte, Oct 22 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,4,16,44},50] (* Harvey P. Dale, Mar 16 2015 *)
  • Maxima
    makelist(4*n*(n^2+2)/3, n, 0, 41); /* Martin Ettl, Oct 15 2012 */
    
  • PARI
    a(n)=(n^2+2)*n/3*4
    

Formula

a(n) = 4*A006527(n).
From Peter Luschny, Oct 14 2012: (Start)
a(n) = A008412(n)/2.
a(n) = A174794(n+1) - 1.
First differences are in A112087.
Second differences are in A008590 and A022144.
Binomial transformation of (a(n), n > 0) is A082138. (End)
G.f.: 4*x*(1 + x^2)/(x - 1)^4. - R. J. Mathar, Oct 15 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), a(0)=0, a(1)=4, a(2)=16, a(3)=44. - Harvey P. Dale, Mar 16 2015
From Elmo R. Oliveira, Aug 09 2025: (Start)
E.g.f.: 4*exp(x)*x*(3 + 3*x + x^2)/3.
a(n) = A292022(n)/3. (End)

A109001 Triangle, read by rows, where g.f. of row n equals the product of (1-x)^n and the g.f. of the coordination sequence for root lattice B_n, for n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 15, 23, 1, 1, 28, 102, 60, 1, 1, 45, 290, 402, 125, 1, 1, 66, 655, 1596, 1167, 226, 1, 1, 91, 1281, 4795, 6155, 2793, 371, 1, 1, 120, 2268, 12040, 23750, 18888, 5852, 568, 1, 1, 153, 3732, 26628, 74574, 91118, 49380, 11124, 825, 1, 1, 190, 5805, 53544, 201810, 350196, 291410, 114600, 19629, 1150, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 17 2005

Keywords

Comments

Compare to triangle A108558, where row n equals the (n+1)-th differences of the crystal ball sequence for D_n lattice.

Examples

			G.f.s of initial rows of square array A108998 are:
  (1),
  (1 + x)/(1-x),
  (1 + 6*x + x^2)/(1-x)^2;
  (1 + 15*x + 23*x^2 + x^3)/(1-x)^3;
  (1 + 28*x + 102*x^2 + 60*x^3 + x^4)/(1-x)^4.
Triangle begins:
  1;
  1,   1;
  1,   6,    1;
  1,  15,   23,     1;
  1,  28,  102,    60,     1;
  1,  45,  290,   402,   125,     1;
  1,  66,  655,  1596,  1167,   226,     1;
  1,  91, 1281,  4795,  6155,  2793,   371,     1;
  1, 120, 2268, 12040, 23750, 18888,  5852,   568,   1;
  1, 153, 3732, 26628, 74574, 91118, 49380, 11124, 825, 1;
		

Crossrefs

Cf. A108998, A108999, A109000, A022144 (row 2), A022145 (row 3), A022146 (row 4), A022147 (row 5), A022148 (row 6), A022149 (row 7), A022150 (row 8), A022151 (row 9), A022152 (row 10), A022153 (row 11), A022154 (row 12).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Binomial(2*n+1,2*k)-2*n*Binomial(n-1,k-1)))); # Muniru A Asiru, Dec 14 2018
  • Mathematica
    T[n_, k_] := Binomial[2n+1, 2k] - 2n * Binomial[n-1, k-1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    T(n,k)=binomial(2*n+1,2*k)-2*n*binomial(n-1,k-1)
    

Formula

T(n, k) = C(2*n+1, 2*k) - 2*n*C(n-1, k-1).
Row sums are 2^n*(2^n - n) for n >= 0.
G.f. for coordination sequence of B_n lattice: ((Sum_{i=0..n} binomial(2*n+1, 2*i)*z^i) - 2*n*z*(1+z)^(n-1))/(1-z)^n. [Bacher et al.]

A019561 Coordination sequence for C_5 lattice.

Original entry on oeis.org

1, 50, 450, 1970, 5890, 14002, 28610, 52530, 89090, 142130, 216002, 315570, 446210, 613810, 824770, 1086002, 1404930, 1789490, 2248130, 2789810, 3424002, 4160690, 5010370, 5984050, 7093250, 8350002
Offset: 0

Views

Author

mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Crossrefs

Cf. A103884 (row 5). For coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50).

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,50,450,1970,5890,14002},30] (* Harvey P. Dale, Nov 21 2021 *)

Formula

G.f.: (1+45*x+210*x^2+210*x^3+45*x^4+x^5)/(1-x)^5 = 1+2*x*(5+10*x+x^2)^2/(1-x)^5.
G.f. for sequence with interpolated zeros: cosh(10*arctanh(x)) = 1/2*( ((1 + x)/(1 - x))^5 + ((1 - x)/(1 + x))^5 ) = 1 + 50*x^2 + 450*x^4 + 1970*x^6 + .... - Peter Bala, Apr 09 2017
a(n) = A008413(2*n). - Seiichi Manyama, Jun 08 2018

A103883 Square array A(n,k) read by antidiagonals: coordination sequence for lattice B_n.

Original entry on oeis.org

1, 1, 8, 1, 18, 16, 1, 32, 74, 24, 1, 50, 224, 170, 32, 1, 72, 530, 768, 306, 40, 1, 98, 1072, 2562, 1856, 482, 48, 1, 128, 1946, 6968, 8130, 3680, 698, 56, 1, 162, 3264, 16394, 28320, 20082, 6432, 954, 64, 1, 200, 5154, 34624, 83442, 85992, 42130, 10304, 1250, 72
Offset: 2

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Examples

			Array, A(n, k), begins:
  1,   8,    16,     24,      32,       40,        48, ... A022144;
  1,  18,    74,    170,     306,      482,       698, ... A022145;
  1,  32,   224,    768,    1856,     3680,      6432, ... A022146;
  1,  50,   530,   2562,    8130,    20082,     42130, ... A022147;
  1,  72,  1072,   6968,   28320,    85992,    214864, ... A022148;
  1,  98,  1946,  16394,   83442,   307314,    907018, ... A022149;
  1, 128,  3264,  34624,  216448,   954880,   3301952, ... A022150;
  1, 162,  5154,  67266,  507906,  2653346,  10666146, ... A022151;
  1, 200,  7760, 122264, 1099040,  6728168,  31208560, ... A022152;
  1, 242, 11242, 210474, 2224178, 15804866,  83999962, ... A022153;
  1, 288, 15776, 346304, 4254912, 34792672, 210482016, ... A022154;
  ...
Antidiagonals, T(n, k), begin as:
  1;
  1,   8;
  1,  18,   16;
  1,  32,   74,    24;
  1,  50,  224,   170,    32;
  1,  72,  530,   768,   306,    40;
  1,  98, 1072,  2562,  1856,   482,   48;
  1, 128, 1946,  6968,  8130,  3680,  698,  56;
  1, 162, 3264, 16394, 28320, 20082, 6432, 954, 64;
		

Crossrefs

Programs

  • Magma
    A103883:= func< n,k | (&+[Binomial(n-j-1,n-k-1)*(Binomial(2*n-2*k+1,2*j) - 2*j*Binomial(n-k,j)) : j in [0..k]]) >;
    [A103883(n,k): k in [0..n-2], n in [2..14]]; // G. C. Greubel, May 24 2023
    
  • Mathematica
    offset = 2;
    T[n_, k_] := SeriesCoefficient[Sum[(Binomial[2n + 1, 2i] - 2i Binomial[n, i]) x^i, {i, 0, n}]/(1 - x)^n, {x, 0, k}];
    Table[T[n - k, k], {n, offset, 11}, {k, 0, n - offset}] // Flatten (* Jean-François Alcover, Feb 13 2019 *)
  • SageMath
    def A103883(n,k): return sum(binomial(n-j-1,n-k-1)*(binomial(2*n-2*k+1,2*j) - 2*j*binomial(n-k,j)) for j in range(k+1))
    flatten([[A103883(n,k) for k in range(n-1)] for n in range(2,15)]) # G. C. Greubel, May 24 2023

Formula

G.f. of n-th row: (Sum_{i=0..n} (C(2n+1, 2*i) - 2*i*C(n, i))*x^i)/(1-x)^n.
From G. C. Greubel, May 24 2023: (Start)
A(n, k) = Sum_{j=0..k} binomial(n+k-j-1, n-1)*(binomial(2*n+1, 2*j) - 2*j*binomial(n, j)) (array).
T(n, k) = Sum_{j=0..k} binomial(n-j-1, n-k-1)*(binomial(2*n-2*k+1, 2*j) - 2*j*binomial(n-k, j)) (antidiagonals). (End)

A181390 Absolute difference between (sum of previous terms) and (n-th-odd square) with a(1) = 1.

Original entry on oeis.org

1, 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 17 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{lst={1}},Do[AppendTo[lst,Abs[Total[lst]-n^2]],{n,1,111,2}];lst] (* or *) Join[{1},LinearRecurrence[{2,-1},{0,8},60]] (* Harvey P. Dale, Aug 23 2012 *)
    ad[{t_,n_,a_}]:=Module[{c=Abs[t-(2n-1)^2]},{t+c,n+1,c}]; NestList[ad,{1,1,1},60][[All,3]] (* or  *) Join[{1}, NestList[8 + # &, 0, 60]] (* Harvey P. Dale, May 14 2019 *)
  • PARI
    a(n)=if(n>1,8*n-8,1) \\ Charles R Greathouse IV, Jul 31 2013

Formula

a(n) = 8*(n-2) = A008590(n-2), n>1. - R. J. Mathar, Oct 18 2010
G.f.: x*(1 - 2*x + 9*x^2)/(-1 + x)^2. -Alexander R. Povolotsky, Oct 18 2010
a(1)=1, a(2)=0, a(3)=8, a(n)=2*a(n-1)-a(n-2). -Harvey P. Dale, Aug 23 2012
E.g.f.: 16 + 9*x + 8*exp(x)*(x - 2). - Stefano Spezia, Apr 03 2023

Extensions

Adapted g.f. to the offset from Bruno Berselli, Aug 01 2013

A281813 a(0) = 3, a(n) = 8*n + 4 for n > 0.

Original entry on oeis.org

3, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 140, 148, 156, 164, 172, 180, 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 356, 364, 372, 380, 388, 396, 404
Offset: 0

Views

Author

Rayan Ivaturi, Jan 30 2017

Keywords

Comments

Consider a 1 X S rectangle on an infinite grid and surround it successively with the minimum number of 1 X 1 tiles: the initial S on step 0, 2S + 6 on step 1, 2S + 14 on step 2, and so on. This sequence is case S = 3. See Ivaturi link for a connection to sieving for primes.

Crossrefs

Cf. A017113.
Other 'ripple sequences': A022144 (s=1), A017089 (s=2).

Programs

Formula

G.f.: (3 + 6*x - x^2)/(1 - x)^2.
a(n) = A017113(n) for n>0, a(0) = 3.
a(n) = A086570(n+1) for n>=1. - R. J. Mathar, Jun 21 2025

Extensions

Entry revised by Editors of OEIS, Feb 09 2017
Previous Showing 31-38 of 38 results.