cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 81 results. Next

A344110 Triangle read by rows: T(n,k) = 2^(n*k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 4, 16, 1, 8, 64, 512, 1, 16, 256, 4096, 65536, 1, 32, 1024, 32768, 1048576, 33554432, 1, 64, 4096, 262144, 16777216, 1073741824, 68719476736, 1, 128, 16384, 2097152, 268435456, 34359738368, 4398046511104, 562949953421312
Offset: 0

Views

Author

Mohammad K. Azarian, May 10 2021

Keywords

Comments

T(n, k) is the number of relations from an n-element set into a k-element set, n >= 0, 0 <= k <= n.
T(n,k) is the size of the right principal ideal generated by A where A is an n X n matrix over GF(2) having rank k. The right principal ideal of A contains precisely the matrices whose image is contained in the image of A. - Geoffrey Critzer, Sep 25 2022

Examples

			T(3,3) = number of relations from a 3-element set into a 3-element set=2^(3*3)=512.
Triangle begins:
   1
   1   2
   1   4      16
   1   8      64      512
   1  16     256     4096      65536
   1  32    1024    32768    1048576    33554432
   ...
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n*k), {n, 0, 10}, {k, 0, n}]

Formula

T(n,k) = 2^(n*k).
T(n,k) = Sum_{j=0..k} A288853(n,j)*A022166(n,j). - Geoffrey Critzer, Jan 02 2023

A158474 Triangle read by rows generated from (x-1)*(x-2)*(x-4)*...

Original entry on oeis.org

1, 1, -1, 1, -3, 2, 1, -7, 14, -8, 1, -15, 70, -120, 64, 1, -31, 310, -1240, 1984, -1024, 1, -63, 1302, -11160, 41664, -64512, 32768, 1, -127, 5334, -94488, 755904, -2731008, 4161536, -2097152, 1, -255, 21590, -777240, 12850368, -99486720, 353730560
Offset: 0

Views

Author

Gary W. Adamson, Mar 20 2009

Keywords

Comments

Row sum of the unsigned triangle = A028361: (1, 2, 6, 30, 270, 4590, ...).
Right border of the unsigned triangle = A006125: (1, 1, 2, 8, 64, 1024, ...).
From Philippe Deléham, Mar 20 2009: (Start)
Unsigned triangle: A077957(n) DELTA A007179(n+1) = [1,0,2,0,4,0,8,0,16,0,32,0,...]DELTA[1,1,4,6,16,28,64,120,256,496,...], where DELTA is the operator defined in A084938.
Signed triangle: [1,0,2,0,4,0,8,0,16,0,...]DELTA[-1,-1,-4,-6,-16,-28,-64,...]. (End)

Examples

			First few rows of the triangle =
1;
1,  -1;
1,  -3,     2;
1,  -7,    14,     -8;
1, -15,    70,   -120,       64;
1, -31,   310,  -1240,     1984,    -1024;
1, -63,  1302, -11160,    41664,   -64512,     32768;
1,-127,  5334, -94488,   755904, -2731008,   4161536,  -2097152;
1,-255, 21590,-777240, 12850368,-99486720, 353730560,-534773760, 268435456;
...
Example: row 3 = x^3 - 7x^2 + 14x - 8 = (x-1)*(x-2)*(x-4).
		

Crossrefs

Cf. A157963, A135950. - R. J. Mathar, Mar 20 2009

Programs

  • Maple
    A158474 := proc(n,k) mul(x-2^j,j=0..n-1) ; expand(%); coeftayl(%,x=0,n-k) ; end proc: # R. J. Mathar, Aug 27 2011
  • Mathematica
    {{1}}~Join~Table[Reverse@ CoefficientList[Fold[#1 (x - #2) &, 1, 2^Range[0, n]], x], {n, 0, 7}] // Flatten (* Michael De Vlieger, Dec 22 2016 *)

Formula

T(n,k) = coefficient [x^(n-k)] of (x-1)*(x-2)*(x-4)*...*(x-2^(n-1)).
T(n,k) = (-1)^k*(Sum_{j=0..k} T(k,j)*2^((k-j)*n))/(Product_{i=1..k} (2^i-1)) for n >= 0 and k > 0, i.e., e.g.f. of col k > 0 is: (-1)^k*(Sum_{j=0..k} T(k,j)* exp(2^(k-j)*t))/(Product_{i=1..k} (2^i-1)). - Werner Schulte, Dec 18 2016
T(n,k)/T(k,k) = A022166(n,k) for 0 <= k <= n. - Werner Schulte, Dec 21 2016

A296548 Triangle read by rows: T(n,k) is the number of diagonalizable n X n matrices over GF(2) that have rank k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 28, 28, 1, 1, 120, 560, 120, 1, 1, 496, 9920, 9920, 496, 1, 1, 2016, 166656, 714240, 166656, 2016, 1, 1, 8128, 2731008, 48377856, 48377856, 2731008, 8128, 1, 1, 32640, 44216320, 3183575040, 13158776832, 3183575040, 44216320, 32640, 1
Offset: 0

Views

Author

Geoffrey Critzer, Dec 15 2017

Keywords

Comments

Equivalently, T(n,k) is the number of n X n matrices, P, over GF(2) with rank k, such that P^2 = P.
Equivalently, T(n,k) is the number of direct sum decompositions of the vector space GF(2)^n into exactly two subspaces U and W such that the dimension of U is k.

Examples

			Triangle T(n,k) begins:
  1;
  1,    1;
  1,    6,      1;
  1,   28,     28,      1;
  1,  120,    560,    120,      1;
  1,  496,   9920,   9920,    496,    1;
  1, 2016, 166656, 714240, 166656, 2016, 1;
  ...
		

Crossrefs

Cf. A132186 (row sums).

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, b(n-1, k-1)+2^k*b(n-1, k)))
        end:
    T:= (n,k)-> 2^(k*(n-k))*b(n, k):
    seq(seq(T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Dec 02 2024
  • Mathematica
    nn = 8; g[n_] := (q - 1)^n  q^Binomial[n, 2] FunctionExpand[
        QFactorial[n, q]] /. q -> 2; Grid[Map[Select[#, # > 0 &] &,
      Table[g[n], {n, 0, nn}] CoefficientList[Series[Sum[(u z)^r/g[r] , {r, 0, nn}] Sum[z^r/g[r], {r, 0, nn}], {z, 0, nn}], {z, u}]]]

Formula

T(n,k)/A002884(n) is the coefficient of y^k*x^n in the expansion of Sum_{n>=0} x^n\A002884(n) * Sum_{n>=0} y*x^n\A002884(n).
T(n,k) = A002884(n)/(A002884(k)*A002884(n-k)) = A022166(n,k)*2^(k(n-k)).

A362824 Array read by antidiagonals: T(n,k) is the number of k-tuples of involutions on [n] that pairwise commute.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 4, 1, 1, 1, 8, 10, 10, 1, 1, 1, 16, 22, 52, 26, 1, 1, 1, 32, 46, 232, 196, 76, 1, 1, 1, 64, 94, 976, 1016, 1216, 232, 1, 1, 1, 128, 190, 4000, 4576, 12496, 5944, 764, 1, 1, 1, 256, 382, 16192, 19376, 111376, 73648, 42400, 2620, 1
Offset: 0

Views

Author

Andrew Howroyd, May 06 2023

Keywords

Comments

Two involutions x,y on [n] commute if x*y = y*x.

Examples

			Array begins:
===========================================================
n/k| 0   1    2     3      4       5        6         7 ...
---+-------------------------------------------------------
0  | 1   1    1     1      1       1        1         1 ...
1  | 1   1    1     1      1       1        1         1 ...
2  | 1   2    4     8     16      32       64       128 ...
3  | 1   4   10    22     46      94      190       382 ...
4  | 1  10   52   232    976    4000    16192     65152 ...
5  | 1  26  196  1016   4576   19376    79696    323216 ...
6  | 1  76 1216 12496 111376  936976  7680016  62177296 ...
7  | 1 232 5944 73648 716416 6289312 52647904 430723168 ...
  ...
		

Crossrefs

Columns k=0..3 are A000012, A000085, A362819, A362825.
Rows n=2..3 are A000079, A033484.
Main diagonal is A362823.

Programs

  • PARI
    \\ B(n,k) is A022166.
    B(n,k)={polcoef(x^k/prod(j=0, k, 1-2^j*x + O(x*x^n)), n)}
    T(n,k)={if(n==0, 1, n!*polcoef(exp(sum(j=0, min(k,logint(n,2)), B(k,j)*x^(2^j)/2^j, O(x*x^n))), n))}

Formula

T(0,k) = T(1,k) = 1.

A034496 Sum of n-th powers of divisors of 8.

Original entry on oeis.org

4, 15, 85, 585, 4369, 33825, 266305, 2113665, 16843009, 134480385, 1074791425, 8594130945, 68736258049, 549822930945, 4398314962945, 35185445863425, 281479271743489, 2251816993685505, 18014467229220865
Offset: 0

Views

Author

Keywords

Comments

Conjecture: No primes in this sequence (checked for first 10000 terms). [Artur Jasinski, Sep 23 2008]
All terms are composite because a(n) = (1 + 2^n)*(1 + 4^n). [T. D. Noe, Apr 26 2010]

Crossrefs

Programs

Formula

G.f.: (4 - 45*x + 140*x^2 - 120*x^3)/((1 - 8*x)*(1 - 4*x)*(1 - 2*x)*(1 - x)). [Bruno Berselli, Apr 17 2014]
a(n) = (2^(4*n) - 1)/( 2^n - 1) = 1 + 2^n + 4^n + 8^n. Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 15*x + 155*x^2 + 1395*x^3 + ... is the o.g.f. for the 3rd subdiagonal of triangle A022166, essentially A006096. - Peter Bala, Apr 07 2015

A286331 Triangle read by rows: T(n,k) is the number of n X n matrices of rank k over F_2.

Original entry on oeis.org

1, 1, 1, 1, 9, 6, 1, 49, 294, 168, 1, 225, 7350, 37800, 20160, 1, 961, 144150, 4036200, 19373760, 9999360, 1, 3969, 2542806, 326932200, 8543828160, 39687459840, 20158709760, 1, 16129, 42677334, 23435953128, 2812314375360, 71124337751040, 325139829719040, 163849992929280
Offset: 0

Views

Author

Geoffrey Critzer, May 07 2017

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1,   1;
  1,   9,      6;
  1,  49,    294,     168;
  1, 225,   7350,   37800,    20160;
  1, 961, 144150, 4036200, 19373760, 9999360;
  ...
T(2,1) = 9 because there are 9, 2 X 2 matrices in F_2 that have rank 1: {{0, 0}, {0, 1}}, {{0, 0}, {1, 0}}, {{0, 0}, {1, 1}}, {{0, 1}, {0, 0}}, {{0, 1}, {0, 1}}, {{1, 0},  {0, 0}}, {{1, 0}, {1, 0}}, {{1,1}, {0, 0}}, {{1, 1}, {1, 1}}.
		

Crossrefs

Main diagonal is A002884.
Column for k = 1 is A060867.
Row sums are A002416.

Programs

  • Maple
    T:= (n,k) -> mul((2^n-2^j)^2/(2^k-2^j),j=0..k-1):
    seq(seq(T(n,k),k=0..n),n=0..10); # Robert Israel, May 15 2017
  • Mathematica
    q = 2; Table[Table[Product[(q^n - q^i)^2/(q^k - q^i), {i, 0, k - 1}], {k, 0, n}], {n, 0, 6}] // Grid

Formula

T(n,k) = Product_{j=0..k-1} (2^n - 2^j)^2/(2^k - 2^j) = A022166(n,k) * Product_{j=0..k-1} (2^n - 2^j).

A020514 a(n) = 1^n + 2^n + 4^n + 8^n + 16^n.

Original entry on oeis.org

5, 31, 341, 4681, 69905, 1082401, 17043521, 270549121, 4311810305, 68853957121, 1100586419201, 17600780175361, 281543712968705, 4504149450301441, 72061992352890881, 1152956690052710401, 18447025552981295105, 295150156996346511361, 4722384497336874434561
Offset: 0

Views

Author

Keywords

Comments

5th cyclotomic polynomial evaluated at 2^n.

Crossrefs

Programs

  • Maple
    with(numtheory,cyclotomic):seq(cyclotomic(5,2^i),i=0..24);
  • Mathematica
    With[{c=2^Range[0,4]},Table[Total[c^n],{n,0,20}]] (* Harvey P. Dale, May 27 2012 *)
  • PARI
    a(n)=1^n+2^n+4^n+8^n+16^n \\ Charles R Greathouse IV, Oct 07 2015
  • Sage
    [sigma(16,n)for n in range(0,16)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: 1/(1-x)+1/(1-2*x)+1/(1-4*x)+1/(1-8*x)+1/(1-16*x). - Philippe Deléham, Apr 06 2013
E.g.f.: exp(x) + exp(2*x) + exp(4*x) + exp(8*x) + exp(16*x). - Philippe Deléham, Apr 06 2013
a(n) = 31*a(n-1) - 310*a(n-2) + 1240*a(n-3) - 1984*a(n-4) + 1024*a(n-5) with a(0) = 5, a(1) = 31, a(2) = 341, a(3) = 4681, a(4) = 69905. - Philippe Deléham, Apr 06 2013
a(n) = (2^(5*n) - 1)/( 2^n - 1). Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 31*x + 651*x^2 + 11811*x^3 + ... is the o.g.f. for the 4th subdiagonal of triangle A022166, essentially A006097. - Peter Bala, Apr 07 2015

A020516 Sum of n-th powers of divisors of 64.

Original entry on oeis.org

7, 127, 5461, 299593, 17895697, 1108378657, 69810262081, 4432676798593, 282578800148737, 18049651735527937, 1154048505100108801, 73823022692637345793, 4723519685917965029377, 302268352895954163081217
Offset: 0

Views

Author

Keywords

Comments

7th cyclotomic polynomial evaluated at powers of 2.

Crossrefs

Programs

  • Magma
    [&+[Divisors(64)[i]^n: i in [1..7]]: n in [0..15]]; // Vincenzo Librandi, Apr 17 2014
    
  • Maple
    with(numtheory,cyclotomic):seq(cyclotomic(7,2^i),i=0..24);
  • Mathematica
    Total[#^Range[0,15]&/@Divisors[64]]  (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    a(n) = polcyclo(7, 2^n); \\ Michel Marcus, Nov 13 2016

Formula

G.f.: (-7+762 x-26670 x^2+377952 x^3-2267712 x^4+5462016 x^5-4161536 x^6)/(-1+127 x-5334 x^2+94488 x^3-755904 x^4+2731008 x^5-4161536 x^6+2097152 x^7). - Harvey P. Dale, Mar 21 2011
a(n) = (2^(7*n) - 1)/( 2^n - 1). Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 127*x + 10795*x^2 + ... is the o.g.f. for the 6th subdiagonal of triangle A022166, essentially A022189. - Peter Bala, Apr 07 2015

A034665 Sum of n-th powers of divisors of 32.

Original entry on oeis.org

6, 63, 1365, 37449, 1118481, 34636833, 1090785345, 34630287489, 1103823438081, 35253226045953, 1127000493261825, 36046397799139329, 1153203048319815681, 36897992296869404673, 1180663682709764194305
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [DivisorSigma(n,32): n in [0..15]]; // Vincenzo Librandi, Apr 17 2014
    
  • Mathematica
    Total[#^Range[0, 15]&/@Divisors[32]] (* Vincenzo Librandi, Apr 17 2014 *)
    LinearRecurrence[{63,-1302,11160,-41664,64512,-32768},{6,63,1365,37449,1118481,34636833},20] (* Harvey P. Dale, Jan 10 2015 *)
  • PARI
    a(n)=(64^n-1)/(2^n-1) \\ Charles R Greathouse IV, Oct 07 2015
    
  • Python
    print([1+2**n+4**n+8**n+16**n+32**n for n in range(15)]) # Karl V. Keller, Jr., Feb 02 2021
  • Sage
    [sigma(32,n)for n in range(0,15)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: -3*(21504*x^5-27776*x^4+11160*x^3-1736*x^2+105*x-2) / ((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(16*x-1)*(32*x-1)). - Colin Barker, Apr 20 2014
a(n) = (2^(6*n) - 1)/( 2^n - 1). Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 63*x + 2667*x^2 + 97155*x^3 + ... is the o.g.f. for the 5th subdiagonal of triangle A022166, essentially A006110. - Peter Bala, Apr 07 2015
a(n) = 1 + 2^n + 4^n + 8^n + 16^n + 32^n for n>=0. - Karl V. Keller, Jr., Feb 02 2021

A157783 Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (3^(i-1)-x) in row n, column k, 0 <= k <= n.

Original entry on oeis.org

1, 1, -1, 3, -4, 1, 27, -39, 13, -1, 729, -1080, 390, -40, 1, 59049, -88209, 32670, -3630, 121, -1, 14348907, -21493836, 8027019, -914760, 33033, -364, 1, 10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093
Offset: 0

Views

Author

Roger L. Bagula, Mar 06 2009

Keywords

Comments

Row sums except n=0 are zero.
Triangle T(n,k), 0 <= k <= n, read by rows given by [1,q-1,q^2,q^3-q,q^4,q^5-q^2,q^6,q^7-q^3,q^8,...] DELTA [ -1,0,-q,0,-q^2,0,-q^3,0,-q^4,0,...] (for q=3)=[1,2,9,24,81,234,729,2160,6561,...] DELTA [ -1,0,-3,0,-9,0,-27,0,-81,0,-243,0,...] where DELTA is the operator defined in A084938; see A122006 and A000244. - Philippe Deléham, Mar 09 2009

Examples

			Triangle begins
  1;
  1, -1;
  3, -4, 1;
  27, -39, 13, -1;
  729, -1080, 390, -40, 1;
  59049, -88209, 32670, -3630, 121, -1;
  14348907, -21493836, 8027019, -914760, 33033, -364, 1;
  10460353203, -15683355351, 5873190687, -674887059, 24995817, -298389, 1093, -1;
  22876792454961, -34309958505840, 12860351387820, -1481851188720, 55340738838, -677572560, 2688780, -3280, 1;
Row n=3 is 27 - 39*x + 13*x^2 - x^3.
		

Crossrefs

Cf. A157832, A135950, A022166, A047656 (column k=1), A003462 (subdiagonal k=n-1), A203243 (subdiagonal k=n-2).

Programs

  • Maple
    A157783 := proc(n,k)
        product( 3^(i-1)-x,i=1..n) ;
        coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Oct 15 2013
  • Mathematica
    Clear[f, q, M, n, m];
    q = 3;
    f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
    M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
    Table[M[n], {n, 1, 10}];
    Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
    a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
    Flatten[a]
Previous Showing 31-40 of 81 results. Next