cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 81 results. Next

A277218 Maximal coefficient among the polynomials in row n of the triangle of q-binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 5, 8, 12, 20, 32, 58, 94, 169, 289, 526, 910, 1667, 2934, 5448, 9686, 18084, 32540, 61108, 110780, 208960, 381676, 723354, 1328980, 2527074, 4669367, 8908546, 16535154, 31630390, 58965214, 113093022, 211591218, 406680465, 763535450, 1470597342, 2769176514, 5342750699, 10089240974
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 05 2016

Keywords

Comments

q-binomial coefficients are polynomials in q with integer coefficients.
Is A055606 a shifted version of this sequence?

Examples

			Row 5 of the triangle of q-binomial coefficients is [1, 1 + q + q^2 + q^3 + q^4, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + q^2 + q^3 + q^4, 1], so the max coefficient is 2. Hence a(5) = 2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k, c, v, q;
      uses QDifferenceEquations;
      v:= 0:
      for k from 0 to n do
        c:= coeffs(expand(expand(QBinomial(n,k,q))),q);
        v:= max(v, max(c));
      od:
    v
    end proc:
    map(f, [$0..50]); # Robert Israel, Oct 05 2016
  • Mathematica
    Table[Coefficient[Expand[FunctionExpand[QBinomial[n, Floor[n/2], q]]], q, Floor[n^2/8]], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 24 2021 *)

Formula

a(n) ~ sqrt(3) * 2^(n+2) / (Pi * n^2). - Vaclav Kotesovec, Oct 09 2016

A289539 Number of ways to choose a subspace U of GF(2)^n and then choose a subspace of U.

Original entry on oeis.org

1, 3, 12, 66, 513, 5769, 95706, 2379348, 89759799, 5188919427, 463209471288, 64236626341974, 13903296824817117, 4713694025825766861, 2510421030027019810854, 2104931848782489253483752, 2783505220978001187684672531, 5813031971452642599096778614183
Offset: 0

Views

Author

Geoffrey Critzer, Jul 12 2017

Keywords

Comments

A q-analog (q=2) of A000244.

Crossrefs

Programs

  • Mathematica
    nn = 20; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];
    Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[ Series[eq[z]^3 /. q -> 2, {z, 0, nn}], z]

Formula

a(n) = Sum_{k=0..n} A022166(n,k)*A006116(k).
a(n)/[n]_q! is the coefficient of x^n in the expansion of exp_q(x)^3 when q -> 2 and where exp_q(x) is the q-exponential function and [n]_q! is the q-factorial of n.

A359985 Triangle read by rows: T(n,k) is the number of quasi series-parallel matroids on [n] with rank k, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1365, 651, 63, 1, 1, 127, 2667, 10941, 10941, 2667, 127, 1, 1, 255, 10795, 82215, 156597, 82215, 10795, 255, 1, 1, 511, 43435, 589135, 1988007, 1988007, 589135, 43435, 511, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 08 2023

Keywords

Comments

A quasi series-parallel matroid is a collection of series-parallel matroids. See the Ferroni/Larson reference for a precise definition.
The first six rows of this triangle are the same as A022166.

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,     1;
  1,  15,   35,    15,     1;
  1,  31,  155,   155,    31,    1;
  1,  63,  651,  1365,   651,   63,   1;
  1, 127, 2667, 10941, 10941, 2667, 127, 1;
  ...
		

Crossrefs

Row sums are A359986.
Columns k=0..2 are A000012, A000225, A006095.

Programs

  • PARI
    \\ Proposition 2.3, 2.8 in Ferroni/Larson, compare A140945.
    T(n) = {[Vecrev(p) | p<-Vec(serlaplace(exp(x*(y+1) + y*intformal( serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))))]}
    { my(A=T(8)); for(i=1, #A, print(A[i])) }

A006098 Gaussian binomial coefficient [ 2n,n ] for q=2.

Original entry on oeis.org

1, 3, 35, 1395, 200787, 109221651, 230674393235, 1919209135381395, 63379954960524853651, 8339787869494479328087443, 4380990637147598617372537398675, 9196575543360038413217351554014467475, 77184136346814161837268404381760884963259795
Offset: 0

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Programs

  • Magma
    q:=2; [n le 0 select 1 else (&*[(1-q^(2*n-j))/(1-q^(j+1)): j in [0..n-1]]): n in [0..15]]; // G. C. Greubel, Mar 09 2019
  • Mathematica
    Table[QBinomial[2n,n,2],{n,0,20}] (* Harvey P. Dale, Oct 22 2012 *)
  • PARI
    q=2; {a(n) = prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1))) };
    vector(10, n, n--; a(n)) \\ G. C. Greubel, Mar 09 2019
    
  • Sage
    [gaussian_binomial(2*n,n,2) for n in range(0,11)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = A022166(2n,n). - Alois P. Heinz, Mar 30 2016
a(n) ~ c * 2^(n^2), where c = A065446. - Vaclav Kotesovec, Sep 22 2016
a(n) = Sum_{k=0..n} 2^(k^2)*(A022166(n,k))^2. - Werner Schulte, Mar 09 2019

Extensions

More terms from Harvey P. Dale, Oct 22 2012

A034674 Sum of n-th powers of divisors of 128.

Original entry on oeis.org

8, 255, 21845, 2396745, 286331153, 35468117025, 4467856773185, 567382630219905, 72340172838076673, 9241421688590303745, 1181745669222511412225, 151189550474521284184065, 19347536633519984760328193
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = (2^(8*n) - 1)/(2^n - 1). Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 255*x + 43435*x^2 + ... is the o.g.f. for the 7th subdiagonal of triangle A022166, essentially A022190. - Peter Bala, Apr 07 2015

A108084 Triangle, read by rows, where T(0,0) = 1, T(n,k) = 2^n*T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 2, 1, 8, 6, 1, 64, 56, 14, 1, 1024, 960, 280, 30, 1, 32768, 31744, 9920, 1240, 62, 1, 2097152, 2064384, 666624, 89280, 5208, 126, 1, 268435456, 266338304, 87392256, 12094464, 755904, 21336, 254, 1, 68719476736, 68451041280, 22638755840, 3183575040, 205605888, 6217920, 86360, 510, 1
Offset: 0

Views

Author

Gerald McGarvey, Jun 05 2005

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [2, 2, 8, 12, 32, 56, 128, 240, 512, ...] DELTA [1, 0, 2, 0, 4, 0, 8, 0, 16, 0, 32, 0, ...] = A014236 (first zero omitted) DELTA A077957 where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 23 2006

Examples

			Triangle begins:
      1;
      2,     1;
      8,     6,    1;
     64,    56,   14,    1;
   1024,   960,  280,   30,  1;
  32768, 31744, 9920, 1240, 62, 1;
		

Crossrefs

Cf. A023531 (q=0), A007318 (q=1), this sequence (q=2), A173007 (q=3), A173008 (q=4).

Programs

  • Magma
    function T(n,k,q)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      else return q^n*T(n-1,k,q) + T(n-1,k-1,q);
      end if; return T; end function;
    [T(n,k,2): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 20 2021
  • Mathematica
    T[n_, k_, q_]:= T[n,k,q]= If[k<0 || k>n, 0, If[k==n, 1, q^n*T[n-1,k,q] +T[n-1,k-1,q] ]];
    Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
  • Sage
    def T(n, k, q):
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        else: return q^n*T(n-1,k,q) + T(n-1,k-1,q)
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 20 2021
    

Formula

Sum_{k=0..n} T(n, k) = A028362(n).
T(n,0) = 2^(n*(n+1)/2) = A006125(n+1). - Philippe Deléham, Nov 05 2006
T(n,k) = 2^binomial(n+1-k,2) * A022166(n,k) for 0 <= k <= n. - Werner Schulte, Mar 25 2019

A270882 Triangle read by rows: D*(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2) with a block containing any given nonzero vector.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 16, 12, 0, 1, 176, 560, 224, 0, 1, 3456, 40000, 53760, 13440, 0, 1, 128000, 5848832, 20951040, 15554560, 2666496, 0, 1, 9115648, 1934195712, 17826414592, 30398054400, 14335082496, 1791885312, 0, 1, 1259921408, 1510821195776, 37083513880576, 134908940386304, 133854174117888, 43693331447808, 4161269661696
Offset: 0

Views

Author

Michel Marcus, Mar 25 2016

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,      2;
  0, 1,     16,      12;
  0, 1,    176,     560,      224;
  0, 1,   3456,   40000,    53760,    13440;
  0, 1, 128000, 5848832, 20951040, 15554560, 2666496;
  ...
		

Crossrefs

Cf. A270880, A270883 (row sums).
The main diagonal appears to match A377642. - Nikita Babich, Nov 17 2024

Programs

  • Mathematica
    (* about 40 seconds on a laptop computer *) g[n_] := q^Binomial[n, 2] * FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2; d[k_, m_] :=Map[PadRight[#, 10] &,Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {j}]]], {j, 1, n}], {n, 1, 10}]][[k, m]];d[0, m_] := If[m == 0, 1, 0]; d[k_, 0] := If[k == 0, 1, 0];s[n_, m_] :=Sum[FunctionExpand[QBinomial[n - 1, k, 2]]*2^(k (n - k))*d[k, m - 1], {k, 0, n - 1}]; Table[Table[s[n, m], {m, 1, n}], {n, 1,7}] (* Geoffrey Critzer, May 20 2017 *)

Formula

Recurrence: a(n) = Sum_{k=0..n-1} q-binomial(n-1,k)*q^(n*(n-k))*D_q(k,m-1) where D_q(k,m-1) is given by A270880 for q = 2 and where the q-binomial for q = 2 is given by A022166. This formula is the q-analog of summation formula for the Stirling numbers of the second kind A008277 so when q = 1, it reduces to that formula. - David P. Ellerman, Mar 26 2016

Extensions

Name extended by David P. Ellerman, Mar 26 2016
Row 8 from Geoffrey Critzer, May 20 2017

A289537 Triangle read by rows: T(n,k) is the number of k-dimensional subspaces of an n-dimensional vector space over F_2 that do not contain a given nonzero vector, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 4, 0, 1, 14, 28, 8, 0, 1, 30, 140, 120, 16, 0, 1, 62, 620, 1240, 496, 32, 0, 1, 126, 2604, 11160, 10416, 2016, 64, 0, 1, 254, 10668, 94488, 188976, 85344, 8128, 128, 0, 1, 510, 43180, 777240, 3212592, 3108960, 690880, 32640, 256, 0
Offset: 0

Views

Author

Geoffrey Critzer, Jul 07 2017

Keywords

Examples

			Triangle begins:
  1;
  1,    0;
  1,    2,    0;
  1,    6,    4,    0;
  1,   14,   28,    8,    0;
  1,   30,  140,  120,   16,    0;
  1,   62,  620, 1240,  496,   32,    0;
		

Crossrefs

Programs

  • Mathematica
    Table[Table[Product[q^n - q^i, {i, 1, k}]/Product[q^k - q^i, {i, 0, k - 1}] /. q -> 2, {k, 0, n}], {n, 0, 9}] // Grid

Formula

T(n,k) = 2^k * A022166(n-1,k).

A157638 Triangle of the elementwise product of binomial coefficients with q-binomial coefficients [n,k] for q = 2.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 60, 210, 60, 1, 1, 155, 1550, 1550, 155, 1, 1, 378, 9765, 27900, 9765, 378, 1, 1, 889, 56007, 413385, 413385, 56007, 889, 1, 1, 2040, 302260, 5440680, 14055090, 5440680, 302260, 2040, 1, 1, 4599, 1563660, 66194940
Offset: 0

Views

Author

Roger L. Bagula, Mar 03 2009

Keywords

Comments

Other triangles in the family (see name) include: q = 2 (this triangle), q = 3 (see A157640), and q = 4 (see A157641). - Werner Schulte, Nov 16 2018

Examples

			Triangle begins:
  1;
  1, 1;
  1, 6, 1;
  1, 21, 21, 1;
  1, 60, 210, 60, 1;
  1, 155, 1550, 1550, 155, 1;
  1, 378, 9765, 27900, 9765, 378, 1;
  1, 889, 56007, 413385, 413385, 56007, 889, 1;
  1, 2040, 302260, 5440680, 14055090, 5440680, 302260, 2040, 1;
  1, 4599, 1563660, 66194940, 417028122, 417028122, 66194940, 1563660, 4599, 1;
		

Crossrefs

Programs

  • Magma
    q:=2; [[k le 0 select 1 else Binomial(n,k)*(&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 17 2018
    
  • Mathematica
    t[n_, m_] = Product[Sum[k*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}];
    b[n_, k_, m_] = t[n, m]/(t[k, m]*t[n - k, m]);
    Flatten[Table[Table[b[n, k, 1], {k, 0, n}], {n, 0, 10}]]
  • PARI
    T(n,k) = {binomial(n,k)*polcoef(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)} \\ Andrew Howroyd, Nov 14 2018
    
  • PARI
    q=2; for(n=0,10, for(k=0,n, print1(binomial(n,k)*prod(j=0,k-1, (1-q^(n-j))/(1-q^(j+1))), ", "))) \\ G. C. Greubel, Nov 17 2018
    
  • Sage
    [[ binomial(n,k)*gaussian_binomial(n,k).subs(q=2) for k in range(n+1)] for n in range(10)] # G. C. Greubel, Nov 17 2018

Formula

T(n,k) = t(n)/(t(k)*t(n-k)) where t(n) = Product_{k=1..n} Sum_{i=0..k-1} k*2^i.
T(n,k) = binomial(n,k)*A022166(n,k) for 0 <= k <= n. - Werner Schulte, Nov 14 2018
T(n,k) = n!*A005329(n)/(k!*A005329(k)*(n-k)!*A005329(n-k)). - Andrew Howroyd, Nov 14 2018

Extensions

Edited and simpler name by Werner Schulte and Andrew Howroyd, Nov 14 2018

A157784 Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (4^(i-1)-x), in row n and column 0 <= k <= n.

Original entry on oeis.org

1, 1, -1, 4, -5, 1, 64, -84, 21, -1, 4096, -5440, 1428, -85, 1, 1048576, -1396736, 371008, -23188, 341, -1, 1073741824, -1431306240, 381308928, -24115520, 372372, -1365, 1, 4398046511104, -5863704100864, 1563272675328, -99158478848
Offset: 0

Views

Author

Roger L. Bagula, Mar 06 2009

Keywords

Comments

Row sums except n=0 are zero.
The matrix inverses seem to be related to the Gaussian q-form combinations.
Triangle T(n,k), 0 <= k <= n, read by rows given by [1,q-1,q^2,q^3-q,q^4,q^5-q^2,q^6,q^7-q^3,q^8,...] DELTA [ -1,0,-q,0,-q^2,0,-q^3,0,-q^4,0,...] (for q=4)=[1,3,16,60,256,1008,4096,16320,65536,261888,...] DELTA [ -1,0,-4,0,-16,0,-64,0,-256,0,-1024,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 10 2009

Examples

			Triangle begins
  1;
  1, -1;
  4, -5, 1;
  64, -84, 21, -1;
  4096, -5440, 1428, -85, 1;
  1048576, -1396736, 371008, -23188, 341, -1;
  1073741824, -1431306240, 381308928, -24115520, 372372, -1365, 1;
  4398046511104, -5863704100864, 1563272675328, -99158478848, 1549351232, -5963412, 5461, -1;
  72057594037927936, -96075326035066880, 25618523216674816, -1626175790120960, 25483729063936, -99253893440, 95436436, -21845, 1;
Row n=3 represents 64 - 84*x + 21*x^2 - x^3.
		

Crossrefs

Programs

  • Maple
    A157784 := proc(n,k)
        product( 4^(i-1)-x,i=1..n) ;
        coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Oct 15 2013
  • Mathematica
    Clear[f, q, M, n, m];
    q = 4;
    f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
    M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
    Table[M[n], {n, 1, 10}];
    Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
    a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
    Flatten[a]
Previous Showing 41-50 of 81 results. Next