A277218
Maximal coefficient among the polynomials in row n of the triangle of q-binomial coefficients.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 3, 5, 8, 12, 20, 32, 58, 94, 169, 289, 526, 910, 1667, 2934, 5448, 9686, 18084, 32540, 61108, 110780, 208960, 381676, 723354, 1328980, 2527074, 4669367, 8908546, 16535154, 31630390, 58965214, 113093022, 211591218, 406680465, 763535450, 1470597342, 2769176514, 5342750699, 10089240974
Offset: 0
Row 5 of the triangle of q-binomial coefficients is [1, 1 + q + q^2 + q^3 + q^4, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + q^2 + q^3 + q^4, 1], so the max coefficient is 2. Hence a(5) = 2.
-
f:= proc(n) local k, c, v, q;
uses QDifferenceEquations;
v:= 0:
for k from 0 to n do
c:= coeffs(expand(expand(QBinomial(n,k,q))),q);
v:= max(v, max(c));
od:
v
end proc:
map(f, [$0..50]); # Robert Israel, Oct 05 2016
-
Table[Coefficient[Expand[FunctionExpand[QBinomial[n, Floor[n/2], q]]], q, Floor[n^2/8]], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 24 2021 *)
A289539
Number of ways to choose a subspace U of GF(2)^n and then choose a subspace of U.
Original entry on oeis.org
1, 3, 12, 66, 513, 5769, 95706, 2379348, 89759799, 5188919427, 463209471288, 64236626341974, 13903296824817117, 4713694025825766861, 2510421030027019810854, 2104931848782489253483752, 2783505220978001187684672531, 5813031971452642599096778614183
Offset: 0
-
nn = 20; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];
Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[ Series[eq[z]^3 /. q -> 2, {z, 0, nn}], z]
A359985
Triangle read by rows: T(n,k) is the number of quasi series-parallel matroids on [n] with rank k, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1365, 651, 63, 1, 1, 127, 2667, 10941, 10941, 2667, 127, 1, 1, 255, 10795, 82215, 156597, 82215, 10795, 255, 1, 1, 511, 43435, 589135, 1988007, 1988007, 589135, 43435, 511, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
1, 31, 155, 155, 31, 1;
1, 63, 651, 1365, 651, 63, 1;
1, 127, 2667, 10941, 10941, 2667, 127, 1;
...
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Luis Ferroni and Matt Larson, Kazhdan-Lusztig polynomials of braid matroids, arXiv:2303.02253 [math.CO], 2023.
- Nicholas Proudfoot, Yuan Xu, and Ben Young, On the enumeration of series-parallel matroids, arXiv:2406.04502 [math.CO], 2024.
-
\\ Proposition 2.3, 2.8 in Ferroni/Larson, compare A140945.
T(n) = {[Vecrev(p) | p<-Vec(serlaplace(exp(x*(y+1) + y*intformal( serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))))]}
{ my(A=T(8)); for(i=1, #A, print(A[i])) }
A006098
Gaussian binomial coefficient [ 2n,n ] for q=2.
Original entry on oeis.org
1, 3, 35, 1395, 200787, 109221651, 230674393235, 1919209135381395, 63379954960524853651, 8339787869494479328087443, 4380990637147598617372537398675, 9196575543360038413217351554014467475, 77184136346814161837268404381760884963259795
Offset: 0
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- T. D. Noe, Table of n, a(n) for n = 0..35
- Alin Bostan and Sergey Yurkevich, On the q-analogue of Pólya's Theorem, arXiv:2109.02406 [math.CO], 2021.
- I. Siap and I. Aydogdu, Counting The Generator Matrices of Z_2 Z_8 Codes, arXiv:1303.6985 [math.CO], 2013.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Eric Weisstein's World of Mathematics, q-Binomial Coefficient.
-
q:=2; [n le 0 select 1 else (&*[(1-q^(2*n-j))/(1-q^(j+1)): j in [0..n-1]]): n in [0..15]]; // G. C. Greubel, Mar 09 2019
-
Table[QBinomial[2n,n,2],{n,0,20}] (* Harvey P. Dale, Oct 22 2012 *)
-
q=2; {a(n) = prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1))) };
vector(10, n, n--; a(n)) \\ G. C. Greubel, Mar 09 2019
-
[gaussian_binomial(2*n,n,2) for n in range(0,11)] # Zerinvary Lajos, May 25 2009
A034674
Sum of n-th powers of divisors of 128.
Original entry on oeis.org
8, 255, 21845, 2396745, 286331153, 35468117025, 4467856773185, 567382630219905, 72340172838076673, 9241421688590303745, 1181745669222511412225, 151189550474521284184065, 19347536633519984760328193
Offset: 0
A108084
Triangle, read by rows, where T(0,0) = 1, T(n,k) = 2^n*T(n-1,k) + T(n-1,k-1).
Original entry on oeis.org
1, 2, 1, 8, 6, 1, 64, 56, 14, 1, 1024, 960, 280, 30, 1, 32768, 31744, 9920, 1240, 62, 1, 2097152, 2064384, 666624, 89280, 5208, 126, 1, 268435456, 266338304, 87392256, 12094464, 755904, 21336, 254, 1, 68719476736, 68451041280, 22638755840, 3183575040, 205605888, 6217920, 86360, 510, 1
Offset: 0
Triangle begins:
1;
2, 1;
8, 6, 1;
64, 56, 14, 1;
1024, 960, 280, 30, 1;
32768, 31744, 9920, 1240, 62, 1;
-
function T(n,k,q)
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
else return q^n*T(n-1,k,q) + T(n-1,k-1,q);
end if; return T; end function;
[T(n,k,2): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 20 2021
-
T[n_, k_, q_]:= T[n,k,q]= If[k<0 || k>n, 0, If[k==n, 1, q^n*T[n-1,k,q] +T[n-1,k-1,q] ]];
Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
-
def T(n, k, q):
if (k<0 or k>n): return 0
elif (k==n): return 1
else: return q^n*T(n-1,k,q) + T(n-1,k-1,q)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 20 2021
A270882
Triangle read by rows: D*(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2) with a block containing any given nonzero vector.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 16, 12, 0, 1, 176, 560, 224, 0, 1, 3456, 40000, 53760, 13440, 0, 1, 128000, 5848832, 20951040, 15554560, 2666496, 0, 1, 9115648, 1934195712, 17826414592, 30398054400, 14335082496, 1791885312, 0, 1, 1259921408, 1510821195776, 37083513880576, 134908940386304, 133854174117888, 43693331447808, 4161269661696
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 16, 12;
0, 1, 176, 560, 224;
0, 1, 3456, 40000, 53760, 13440;
0, 1, 128000, 5848832, 20951040, 15554560, 2666496;
...
-
(* about 40 seconds on a laptop computer *) g[n_] := q^Binomial[n, 2] * FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2; d[k_, m_] :=Map[PadRight[#, 10] &,Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {j}]]], {j, 1, n}], {n, 1, 10}]][[k, m]];d[0, m_] := If[m == 0, 1, 0]; d[k_, 0] := If[k == 0, 1, 0];s[n_, m_] :=Sum[FunctionExpand[QBinomial[n - 1, k, 2]]*2^(k (n - k))*d[k, m - 1], {k, 0, n - 1}]; Table[Table[s[n, m], {m, 1, n}], {n, 1,7}] (* Geoffrey Critzer, May 20 2017 *)
A289537
Triangle read by rows: T(n,k) is the number of k-dimensional subspaces of an n-dimensional vector space over F_2 that do not contain a given nonzero vector, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 6, 4, 0, 1, 14, 28, 8, 0, 1, 30, 140, 120, 16, 0, 1, 62, 620, 1240, 496, 32, 0, 1, 126, 2604, 11160, 10416, 2016, 64, 0, 1, 254, 10668, 94488, 188976, 85344, 8128, 128, 0, 1, 510, 43180, 777240, 3212592, 3108960, 690880, 32640, 256, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 2, 0;
1, 6, 4, 0;
1, 14, 28, 8, 0;
1, 30, 140, 120, 16, 0;
1, 62, 620, 1240, 496, 32, 0;
-
Table[Table[Product[q^n - q^i, {i, 1, k}]/Product[q^k - q^i, {i, 0, k - 1}] /. q -> 2, {k, 0, n}], {n, 0, 9}] // Grid
A157638
Triangle of the elementwise product of binomial coefficients with q-binomial coefficients [n,k] for q = 2.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 60, 210, 60, 1, 1, 155, 1550, 1550, 155, 1, 1, 378, 9765, 27900, 9765, 378, 1, 1, 889, 56007, 413385, 413385, 56007, 889, 1, 1, 2040, 302260, 5440680, 14055090, 5440680, 302260, 2040, 1, 1, 4599, 1563660, 66194940
Offset: 0
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 21, 21, 1;
1, 60, 210, 60, 1;
1, 155, 1550, 1550, 155, 1;
1, 378, 9765, 27900, 9765, 378, 1;
1, 889, 56007, 413385, 413385, 56007, 889, 1;
1, 2040, 302260, 5440680, 14055090, 5440680, 302260, 2040, 1;
1, 4599, 1563660, 66194940, 417028122, 417028122, 66194940, 1563660, 4599, 1;
-
q:=2; [[k le 0 select 1 else Binomial(n,k)*(&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 17 2018
-
t[n_, m_] = Product[Sum[k*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}];
b[n_, k_, m_] = t[n, m]/(t[k, m]*t[n - k, m]);
Flatten[Table[Table[b[n, k, 1], {k, 0, n}], {n, 0, 10}]]
-
T(n,k) = {binomial(n,k)*polcoef(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)} \\ Andrew Howroyd, Nov 14 2018
-
q=2; for(n=0,10, for(k=0,n, print1(binomial(n,k)*prod(j=0,k-1, (1-q^(n-j))/(1-q^(j+1))), ", "))) \\ G. C. Greubel, Nov 17 2018
-
[[ binomial(n,k)*gaussian_binomial(n,k).subs(q=2) for k in range(n+1)] for n in range(10)] # G. C. Greubel, Nov 17 2018
A157784
Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (4^(i-1)-x), in row n and column 0 <= k <= n.
Original entry on oeis.org
1, 1, -1, 4, -5, 1, 64, -84, 21, -1, 4096, -5440, 1428, -85, 1, 1048576, -1396736, 371008, -23188, 341, -1, 1073741824, -1431306240, 381308928, -24115520, 372372, -1365, 1, 4398046511104, -5863704100864, 1563272675328, -99158478848
Offset: 0
Triangle begins
1;
1, -1;
4, -5, 1;
64, -84, 21, -1;
4096, -5440, 1428, -85, 1;
1048576, -1396736, 371008, -23188, 341, -1;
1073741824, -1431306240, 381308928, -24115520, 372372, -1365, 1;
4398046511104, -5863704100864, 1563272675328, -99158478848, 1549351232, -5963412, 5461, -1;
72057594037927936, -96075326035066880, 25618523216674816, -1626175790120960, 25483729063936, -99253893440, 95436436, -21845, 1;
Row n=3 represents 64 - 84*x + 21*x^2 - x^3.
-
A157784 := proc(n,k)
product( 4^(i-1)-x,i=1..n) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Oct 15 2013
-
Clear[f, q, M, n, m];
q = 4;
f[k_, m_] := If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[k == n && m > 1, 1, 0]]]];
M[n_] := Table[f[k, m], {k, 1, n}, {m, 1, n}];
Table[M[n], {n, 1, 10}];
Join[{1}, Table[Expand[CharacteristicPolynomial[M[n], x]], {n, 1, 7}]];
a = Join[{{ 1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 7}]];
Flatten[a]
Comments