cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 93 results. Next

A385559 Period of {binomial(N,8) mod n: N in Z}.

Original entry on oeis.org

1, 16, 9, 32, 25, 144, 49, 64, 27, 400, 11, 288, 13, 784, 225, 128, 17, 432, 19, 800, 441, 176, 23, 576, 125, 208, 81, 1568, 29, 3600, 31, 256, 99, 272, 1225, 864, 37, 304, 117, 1600, 41, 7056, 43, 352, 675, 368, 47, 1152, 343, 2000, 153, 416, 53, 1296, 275, 3136, 171, 464, 59, 7200
Offset: 1

Views

Author

Jianing Song, Jul 03 2025

Keywords

Examples

			For N == 0, 1, ..., 63 (mod 64), binomial(N,8) == {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 5, 7, 7, 3, 3, 6, 6, 6, 6, 2, 2, 2, 2, 7, 7, 3, 3, 1, 1, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 1, 1, 3, 3, 7, 7, 2, 2, 2, 2, 6, 6, 6, 6, 3, 3, 7, 7, 5, 5, 1, 1} (mod 8).
		

Crossrefs

Row n = 8 of A349593. A022998, A385555, A385556, A385557, A385558, and A385560 are respectively rows 2, 3, 4, 5-6, 7, and 9-10.

Programs

  • Mathematica
    A385559[n_] := If[n == 1, 1, n*Product[p^Floor[Log[p, 8]], {p, FactorInteger[n][[All, 1]]}]];
    Array[A385559, 100] (* Paolo Xausa, Jul 07 2025 *)
    a[n_] := n * GCD[n, 210] * (4 - 3 * Mod[n, 2]); Array[a, 100] (* Amiram Eldar, Jul 07 2025 *)
  • PARI
    a(n, {choices=8}) = my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); r *= p^(logint(choices, p)+e)); return(r)

Formula

Multiplicative with a(2^e) = 2^(e+3), a(3^e) = 3^(e+1), a(5^e) = 5^(e+1), a(7^e) = 7^(e+1), and a(p^e) = p^e for primes p >= 11.
From Amiram Eldar, Jul 07 2025: (Start)
a(n) = n * gcd(210, n) * (4 - 3 * (n mod 2)).
Dirichlet g.f.: zeta(s-1) * (1 + 7/2*(s-1)) * (1 + 2/3*(s-1)) * (1 + 4/5*(s-1)) * (1 + 6/7*(s-1)).
Sum_{k=1..n} a(k) ~ (351/28) * n^2. (End)

A385560 Period of {binomial(N,9) mod n: N in Z}. Also, period of {binomial(N,10) mod n: N in Z}.

Original entry on oeis.org

1, 16, 27, 32, 25, 432, 49, 64, 81, 400, 11, 864, 13, 784, 675, 128, 17, 1296, 19, 800, 1323, 176, 23, 1728, 125, 208, 243, 1568, 29, 10800, 31, 256, 297, 272, 1225, 2592, 37, 304, 351, 1600, 41, 21168, 43, 352, 2025, 368, 47, 3456, 343, 2000, 459, 416, 53, 3888, 275, 3136, 513, 464, 59, 21600
Offset: 1

Views

Author

Jianing Song, Jul 03 2025

Keywords

Examples

			For N == 0, 1, ..., 80 (mod 81), binomial(N,9) == {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 4, 4, 4, 1, 1, 1, 2, 2, 2, 8, 8, 8, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 7, 7, 7, 4, 4, 4, 5, 5, 5, 2, 2, 2, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 1, 1, 1, 7, 7, 7, 8, 8, 8, 5, 5, 5, 8, 8, 8} (mod 9), and binomial(N,10) == {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 7, 2, 6, 7, 8, 0, 2, 4, 6, 5, 4, 3, 5, 7, 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 4, 8, 3, 1, 8, 6, 1, 5, 0, 5, 1, 6, 8, 1, 3, 8, 4, 0, 6, 3, 0, 6, 3, 0, 6, 3, 0, 7, 5, 3, 4, 5, 6, 4, 2, 0, 8, 7, 6, 2, 7, 3, 2, 1} (mod 9).
		

Crossrefs

Rows n = 9 and 10 of A349593. A022998, A385555, A385556, A385557, A385558, and A385559 are respectively rows 2, 3, 4, 5-6, 7, and 8.

Programs

  • Mathematica
    A385560[n_] := If[n == 1, 1, n*Product[p^Floor[Log[p, 9]], {p, FactorInteger[n][[All, 1]]}]];
    Array[A385560, 100] (* Paolo Xausa, Jul 07 2025 *)
    a[n_] := n * GCD[n, 6] * GCD[n, 210] * (2 - Mod[n, 2]); Array[a, 100] (* Amiram Eldar, Jul 07 2025 *)
  • PARI
    a(n, {choices=10}) = my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); r *= p^(logint(choices, p)+e)); return(r)

Formula

Multiplicative with a(2^e) = 2^(e+3), a(3^e) = 3^(e+2), a(5^e) = 5^(e+1), a(7^e) = 7^(e+1), and a(p^e) = p^e for primes p >= 11.
From Amiram Eldar, Jul 07 2025: (Start)
a(n) = n * gcd(6, n) * gcd(210, n) * (2 - (n mod 2)).
Dirichlet g.f.: zeta(s-1) * (1 + 7/2*(s-1)) * (1 + 8/3*(s-1)) * (1 + 4/5*(s-1)) * (1 + 6/7*(s-1)).
Sum_{k=1..n} a(k) ~ (3861/140) * n^2. (End)

A098832 Square array read by antidiagonals: even-numbered rows of the table are of the form n*(n+m) and odd-numbered rows are of the form n*(n+m)/2.

Original entry on oeis.org

1, 3, 3, 6, 8, 2, 10, 15, 5, 5, 15, 24, 9, 12, 3, 21, 35, 14, 21, 7, 7, 28, 48, 20, 32, 12, 16, 4, 36, 63, 27, 45, 18, 27, 9, 9, 45, 80, 35, 60, 25, 40, 15, 20, 5, 55, 99, 44, 77, 33, 55, 22, 33, 11, 11, 66, 120, 54, 96, 42, 72, 30, 48, 18, 24, 6, 78, 143, 65, 117, 52, 91, 39, 65, 26, 39, 13, 13
Offset: 1

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 02 2004

Keywords

Comments

The rows of this table and that in A098737 are related. Given a function f = n/( 1 + (1+n) mod(2) ), row n of A098737 can be derived from row n of T by multiplying the latter by f(n); row n of T can be derived from row n of A098737 by dividing the latter by f(n).

Examples

			Array begins as:
  1,  3,  6, 10, 15, 21,  28,  36,  45 ... A000217;
  3,  8, 15, 24, 35, 48,  63,  80,  99 ... A005563;
  2,  5,  9, 14, 20, 27,  35,  44,  54 ... A000096;
  5, 12, 21, 32, 45, 60,  77,  96, 117 ... A028347;
  3,  7, 12, 18, 25, 33,  42,  52,  63 ... A027379;
  7, 16, 27, 40, 55, 72,  91, 112, 135 ... A028560;
  4,  9, 15, 22, 30, 39,  49,  60,  72 ... A055999;
  9, 20, 33, 48, 65, 84, 105, 128, 153 ... A028566;
  5, 11, 18, 26, 35, 45,  56,  68,  81 ... A056000;
Antidiagonals begin as:
   1;
   3,  3;
   6,  8,  2;
  10, 15,  5,  5;
  15, 24,  9, 12,  3;
  21, 35, 14, 21,  7,  7;
  28, 48, 20, 32, 12, 16,  4;
  36, 63, 27, 45, 18, 27,  9,  9;
  45, 80, 35, 60, 25, 40, 15, 20,  5;
  55, 99, 44, 77, 33, 55, 22, 33, 11, 11;
		

Crossrefs

Row m of array: A000217 (m=1), A005563 (m=2), A000096 (m=3), A028347 (m=4), A027379 (m=5), A028560 (m=6), A055999 (m=7), A028566 (m=8), A056000 (m=9), A098603 (m=10), A056115 (m=11), A098847 (m=12), A056119 (m=13), A098848 (m=14), A056121 (m=15), A098849 (m=16), A056126 (m=17), A098850 (m=18), A051942 (m=19).
Column m of array: A026741 (m=1), A022998 (m=2), A165351 (m=3).

Programs

  • Magma
    A098832:= func< n,k | (1/4)*(3+(-1)^k)*(n+1)*(n-k+1) >;
    [A098832(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 31 2022
    
  • Mathematica
    A098832[n_, k_]:= (1/4)*(3+(-1)^k)*(n+1)*(n-k+1);
    Table[A098832[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jul 31 2022 *)
  • SageMath
    def A098832(n,k): return (1/4)*(3+(-1)^k)*(n+1)*(n-k+1)
    flatten([[A098832(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Jul 31 2022

Formula

Item m of row n of T is given (in infix form) by: n T m = n * (n + m) / (1 + m (mod 2)). E.g. Item 4 of row 3 of T: 3 T 4 = 14.
From G. C. Greubel, Jul 31 2022: (Start)
A(n, k) = (1/4)*(3 + (-1)^n)*k*(k+n) (array).
T(n, k) = (1/4)*(3 + (-1)^k)*(n+1)*(n-k+1) (antidiagonal triangle).
Sum_{k=1..n} T(n, k) = (1/8)*(n+1)*( (3*n-1)*(n+1) + (1+(-1)^n)/2 ).
T(2*n-1, n) = A181900(n).
T(2*n+1, n) = 2*A168509(n+1). (End)

Extensions

Missing terms added by G. C. Greubel, Jul 31 2022

A118391 Numerator of sum of reciprocals of first n tetrahedral numbers A000292.

Original entry on oeis.org

1, 5, 27, 7, 10, 81, 35, 22, 81, 65, 77, 135, 52, 119, 405, 76, 85, 567, 209, 115, 378, 275, 299, 486, 175, 377, 1215, 217, 232, 1485, 527, 280, 891, 629, 665, 1053, 370, 779, 2457, 430, 451, 2835, 989, 517, 1620, 1127, 1175, 1836, 637, 1325, 4131, 715, 742
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2006

Keywords

Comments

Denominators are A118392. Fractions are: 1/1, 5/4, 27/20, 7/5, 10/7, 81/56, 35/24, 22/15, 81/55, 65/44, 77/52, 135/91, 52/35, 119/80, 405/272, 76/51, 85/57, 567/380, 209/140, 115/77, 378/253, 275/184, 299/200, 486/325, 175/117, 377/252, 1215/812, 217/145, 232/155, 1485/992.
2n+3 divides a(2n). 2n-1 divides a(2n-1). p divides a(p) for prime p>2. The only primes in a(n) are a(2) = 5 and a(4) = 7. - Alexander Adamchuk, May 08 2007

Examples

			a(1) = 1 = numerator of 1/1.
a(2) = 5 = numerator of 5/4 = 1/1 + 1/4.
a(3) = 27 = numerator of 27/20 = 1/1 + 1/4 + 1/10.
a(4) = 7 = numerator of 7/5 = 1/1 + 1/4 + 1/10 + 1/20.
a(5) = 10 = numerator of 10/7 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35.
a(20) = 115 = numerator of 115/77 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35 + 1/56 + 1/84 + 1/120 + 1/165 + 1/220 + 1/286 + 1/364 + 1/455 + 1/560 + 1/680 + 1/816 + 1/969 + 1/1140 + 1/1330 + 1/1540.
		

Crossrefs

Programs

  • Magma
    [Numerator(3*n*(n+3)/(2*(n+1)*(n+2))): n in [1..60]]; // G. C. Greubel, Feb 18 2021
  • Maple
    A118391:= n-> numer(3*n*(n+3)/(2*(n+1)*(n+2))); seq(A118391(n), n=1..60) # G. C. Greubel, Feb 18 2021
  • Mathematica
    Table[ Numerator[3n(n+3)/(2(n+1)(n+2))], {n,1,100} ] (* Alexander Adamchuk, May 08 2007 *)
    Accumulate[1/Binomial[Range[60]+2,3]]//Numerator (* Harvey P. Dale, Aug 31 2023 *)
  • PARI
    s=0;for(i=3,50,s+=1/binomial(i,3);print(numerator(s))) /* Phil Carmody, Mar 27 2012 */
    
  • Sage
    [numerator(3*n*(n+3)/(2*(n+1)*(n+2))) for n in (1..60)] # G. C. Greubel, Feb 18 2021
    

Formula

A118391(n)/A118392(n) = Sum_{i=1..n} 1/A000292(n).
A118391(n)/A118392(n) = Sum_{i=1..n} 1/C(n+2,3).
A118391(n)/A118392(n) = Sum_{i=1..n} 6/(n*(n+1)*(n+2)).
a(n) = Numerator( 3*n*(n+3)/(2*(n+1)*(n+2)) ). - Alexander Adamchuk, May 08 2007

Extensions

More terms from Alexander Adamchuk, May 08 2007

A165367 Trisection a(n) = A026741(3n + 2).

Original entry on oeis.org

1, 5, 4, 11, 7, 17, 10, 23, 13, 29, 16, 35, 19, 41, 22, 47, 25, 53, 28, 59, 31, 65, 34, 71, 37, 77, 40, 83, 43, 89, 46, 95, 49, 101, 52, 107, 55, 113, 58, 119, 61, 125, 64, 131, 67, 137, 70, 143, 73, 149, 76, 155, 79, 161, 82, 167, 85, 173, 88, 179, 91, 185, 94, 191, 97, 197
Offset: 0

Views

Author

Paul Curtz, Sep 17 2009

Keywords

Comments

The other trisections are A165351 and A165355.

Crossrefs

Programs

Formula

a(n)*A022998(n) = A045944(n).
a(n)*A026741(n+1) = A000326(n+1).
a(2n) = A016777(n); a(2n+1) = A016969(n).
From R. J. Mathar Nov 22 2009: (Start)
a(n) = 2*a(n-2) - a(n-4).
G.f.: (1 + 5*x + 2*x^2 + x^3)/((1-x)^2*(1+x)^2). (End)

Extensions

All comments rewritten as formulas by R. J. Mathar, Nov 22 2009

A227041 Triangle of numerators of harmonic mean of n and m, 1 <= m <= n.

Original entry on oeis.org

1, 4, 2, 3, 12, 3, 8, 8, 24, 4, 5, 20, 15, 40, 5, 12, 3, 4, 24, 60, 6, 7, 28, 21, 56, 35, 84, 7, 16, 16, 48, 16, 80, 48, 112, 8, 9, 36, 9, 72, 45, 36, 63, 144, 9, 20, 10, 60, 40, 20, 15, 140, 80, 180, 10, 11, 44, 33, 88, 55, 132, 77, 176, 99, 220, 11
Offset: 1

Views

Author

Wolfdieter Lang, Jul 01 2013

Keywords

Comments

The harmonic mean H(n,m) is the reciprocal of the arithmetic mean of the reciprocals of n and m: H(n,m) = 1/((1/2)*(1/n +1/m)) = 2*n*m/(n+m). 1/H(n,m) marks the middle of the interval [1/n, 1/m] if m < n: 1/H(n,m) = 1/n + (1/2)*(1/m - 1/n). For m < n one has m < H(n,m) < n, and H(n,n) = n.
H(n,m) = H(m,n).
For the rationals H(n,m)/2 see A221918(n,m)/A221919(n,m). See the comments under A221918.

Examples

			The triangle of numerators of H(n,m), called a(n,m) begins:
n\m  1   2   3   4   5    6    7    8    9   10  11 ...
1:   1
2:   4   2
3:   3  12   3
4:   8   8  24   4
5:   5  20  15  40   5
6:  12   3   4  24  60    6
7:   7  28  21  56  35   84    7
8:  16  16  48  16  80   48  112    8
9:   9  36   9  72  45   36   63  144    9
10: 20  10  60  40  20   15  140   80  180   10
11: 11  44  33  88  55  132   77  176   99  220  11
...
a(4,3) = numerator(24/7) = 24 = 24/gcd(7,18).
The triangle of the rationals H(n,m) begins:
n\m    1      2     3     4      5      6      7      8   9
1:   1/1
2:   4/3    2/1
3:   3/2   12/5   3/1
4:   8/5    8/3  24/7   4/1
5:   5/3   20/7  15/4  40/9    5/1
6:  12/7    3/1   4/1  24/5  60/11    6/1
7:   7/4   28/9  21/5 56/11   35/6  84/13    7/1
8:  16/9   16/5 48/11  16/3  80/13   48/7 112/15    8/1
9:   9/5  36/11   9/2 72/13   45/7   36/5   63/8 144/17 9/1
...
H(4,3) = 2*4*3/(4 + 3) = 2*4*3/7 = 24/7.
		

Crossrefs

Cf. A227042, A022998 (m=1), A227043 (m=2), A227106 (m=3), A227107 (m=4), A221918/A221919.

Formula

a(n,m) = numerator(2*n*m/(n+m)), 1 <= m <= n.
a(n,m) = 2*n*m/gcd(n+m,2*n*m) = 2*n*m/gcd(n+m,2*m^2), n >= 0.

A317311 Multiples of 11 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 11, 3, 22, 5, 33, 7, 44, 9, 55, 11, 66, 13, 77, 15, 88, 17, 99, 19, 110, 21, 121, 23, 132, 25, 143, 27, 154, 29, 165, 31, 176, 33, 187, 35, 198, 37, 209, 39, 220, 41, 231, 43, 242, 45, 253, 47, 264, 49, 275, 51, 286, 53, 297, 55, 308, 57, 319, 59, 330, 61, 341, 63, 352, 65, 363, 67, 374, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 15-gonal numbers (A277082).
a(n) is also the length of the n-th line segment of the rectangular spiral wh0se vertices are the generalized 15-gonal numbers.

Crossrefs

Cf. A008593 and A005408 interleaved.
Column 11 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A277082.

Programs

  • Mathematica
    {0}~Join~Riffle[2 Range@ # - 1, 11 Range@ #] &@ 35 (* or *)
    CoefficientList[Series[x (1 + 11 x + x^2)/((1 - x)^2*(1 + x)^2), {x, 0, 69}], x] (* Michael De Vlieger, Jul 26 2018 *)
    LinearRecurrence[{0,2,0,-1},{0,1,11,3},90] (* Harvey P. Dale, Aug 28 2022 *)
  • PARI
    concat(0, Vec(x*(1 + 11*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 26 2018

Formula

a(2n) = 11*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 26 2018: (Start)
G.f.: x*(1 + 11*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 11*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 9/2^s). - Amiram Eldar, Oct 25 2023
a(n) = (13 + 9*(-1)^n)*n/4. - Aaron J Grech, Aug 20 2024

A059026 Table B(n,m) read by rows: B(n,m) = LCM(n,m)/n + LCM(n,m)/m - 1 for all 1<=m<=n.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 2, 6, 1, 5, 6, 7, 8, 1, 6, 3, 2, 4, 10, 1, 7, 8, 9, 10, 11, 12, 1, 8, 4, 10, 2, 12, 6, 14, 1, 9, 10, 3, 12, 13, 4, 15, 16, 1, 10, 5, 12, 6, 2, 7, 16, 8, 18, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 12, 6, 4, 3, 16, 2, 18, 4, 6, 10, 22, 1, 13, 14, 15, 16
Offset: 1

Views

Author

Asher Auel, Dec 15 2000

Keywords

Comments

In an n X m box, a ball makes B(n,m) "bounces" starting at one corner until it reaches another corner, only allowed to travel on diagonal grid lines. B(n+2,n) = A022998(n+1) for all n >= 1. B(2n-1,n) = A016777(n) = 3n + 1 for all n >= 1 (central vertical).

Crossrefs

Programs

  • Maple
    B := (n,m) -> lcm(n,m)/n + lcm(n,m)/m - 1: seq(seq(B(n,m), n=1..m),m=1..15);

A215947 Difference between the sum of the even divisors and the sum of the odd divisors of 2n.

Original entry on oeis.org

1, 5, 4, 13, 6, 20, 8, 29, 13, 30, 12, 52, 14, 40, 24, 61, 18, 65, 20, 78, 32, 60, 24, 116, 31, 70, 40, 104, 30, 120, 32, 125, 48, 90, 48, 169, 38, 100, 56, 174, 42, 160, 44, 156, 78, 120, 48, 244, 57, 155, 72, 182, 54, 200, 72, 232, 80, 150, 60, 312, 62, 160
Offset: 1

Views

Author

Michel Lagneau, Aug 28 2012

Keywords

Comments

Multiplicative because a(n) = -A002129(2*n), A002129 is multiplicative and a(1) = -A002129(2) = 1. - Andrew Howroyd, Jul 31 2018

Examples

			a(6) = 20 because the divisors of 2*6 = 12 are {1, 2, 3, 4, 6, 12} and (12 + 6 + 4 +2) - (3 + 1) = 20.
		

Crossrefs

Cf. A000593, A002129, A022998 (Moebius transform), A074400, A195382, A195690.

Programs

  • Maple
    with(numtheory):for n from 1 to 100 do:x:=divisors(2*n):n1:=nops(x):s0:=0:s1:=0:for m from 1 to n1 do: if irem(x[m],2)=0 then s0:=s0+x[m]:else s1:=s1+x[m]:fi:od:if s0>s1  then printf(`%d, `,s0-s1):else fi:od:
  • Mathematica
    a[n_] := DivisorSum[2n, (1 - 2 Mod[#, 2]) #&];
    Array[a, 62] (* Jean-François Alcover, Sep 13 2018 *)
    edod[n_]:=Module[{d=Divisors[2n]},Total[Select[d,EvenQ]]-Total[ Select[ d,OddQ]]]; Array[edod,70] (* Harvey P. Dale, Jul 30 2021 *)
  • PARI
    a(n) = 4*sigma(n) - sigma(2*n); \\ Andrew Howroyd, Jul 28 2018

Formula

From Andrew Howroyd, Jul 28 2018: (Start)
a(n) = 4*sigma(n) - sigma(2*n).
a(n) = -A002129(2*n). (End)
G.f.: Sum_{k>=1} x^k*(1 + 4*x^k + x^(2*k))/(1 - x^(2*k))^2. - Ilya Gutkovskiy, Sep 14 2019
a(p) = p + 1 for p prime >= 3. - Bernard Schott, Sep 14 2019
a(n) = A239050(n) - A062731(n) - Omar E. Pol, Mar 06 2021 (after Andrew Howroyd)
From Amiram Eldar, Nov 18 2022: (Start)
Multiplicative with a(2^e) = 2^(e+2) - 3, and a(p^e) = sigma(p^e) = (p^(e+1) - 1)/(p-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/8 = 1.2337005... (A111003). (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1+2^(1-s)). - Amiram Eldar, Jan 05 2023
From Peter Bala, Sep 25 2023: (Start)
a(2*n) = sigma(2*n) + 2*sigma(n); a(2*n+1) = sigma(2*n+1) = A008438(n)
G.f.: A(q) = Sum_{n >= 1} n*q^n*(1 + 3*q^n)/(1 - q^(2*n)).
Logarithmic g.f.: Sum_{n >= 1} a(n)*q^n/n = Sum_{n >= 1} log(1/(1 - q^n)) + Sum_{n >= 1} log(1/(1 - q^(2*n))) = log (G(q)), where G(q) is the g.f. of A002513. (End)

A118392 Denominator of sum of reciprocals of first n tetrahedral numbers A000292.

Original entry on oeis.org

1, 4, 20, 5, 7, 56, 24, 15, 55, 44, 52, 91, 35, 80, 272, 51, 57, 380, 140, 77, 253, 184, 200, 325, 117, 252, 812, 145, 155, 992, 352, 187, 595, 420, 444, 703, 247, 520, 1640, 287, 301, 1892, 660, 345, 1081, 752, 784, 1225, 425, 884, 2756, 477, 495, 3080
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2006

Keywords

Comments

Numerators are A118391.

Examples

			a(1) = 1 = denominator of 1/1.
a(2) = 4 = denominator of 5/4 = 1/1 + 1/4.
a(3) = 20 = denominator of 27/20 = 1/1 + 1/4 + 1/10.
a(4) = 5 = denominator of 7/5 = 1/1 + 1/4 + 1/10 + 1/20.
a(5) = 7 = denominator of 10/7 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35.
a(20) = 77 = denominator of 115/77 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35 + 1/56 + 1/84 + 1/120 + 1/165 + 1/220 + 1/286 + 1/364 + 1/455 + 1/560 + 1/680 + 1/816 + 1/969 + 1/1140 + 1/1330 + 1/1540.
Fractions are: 1/1, 5/4, 27/20, 7/5, 10/7, 81/56, 35/24, 22/15, 81/55, 65/44, 77/52, 135/91, 52/35, 119/80, 405/272, 76/51, 85/57, 567/380, 209/140, 115/77, 378/253, 275/184, 299/200, 486/325, 175/117, 377/252, 1215/812, 217/145, 232/155, 1485/992.
		

Crossrefs

Programs

  • Magma
    [Denominator(3*n*(n+3)/(2*(n+1)*(n+2))): n in [1..60]]; // G. C. Greubel, Feb 18 2021
  • Maple
    A118392:= n -> denom(3*n*(n+3)/(2*(n+1)*(n+2)));
    seq(A118392(n), n = 1..60); # G. C. Greubel, Feb 18 2021
  • Mathematica
    Accumulate[1/Binomial[Range[70]+2,3]]//Denominator (* Harvey P. Dale, Jun 07 2018 *)
  • PARI
    s=0;for(i=3,50,s+=1/binomial(i,3);print(denominator(s))) /* Phil Carmody, Mar 27 2012 */
    
  • Sage
    [denominator(3*n*(n+3)/(2*(n+1)*(n+2))) for n in (1..60)] # G. C. Greubel, Feb 18 2021
    

Formula

A118391(n)/A118392(n) = Sum_{i=1..n} 1/A000292(n).
A118391(n)/A118392(n) = Sum_{i=1..n} 1/C(n+2,3).
A118391(n)/A118392(n) = Sum_{i=1..n} 6/(n*(n+1)*(n+2)).
a(n) = denominator( 3*n*(n+3)/(2*(n+1)*(n+2)) ). - G. C. Greubel, Feb 18 2021

Extensions

More terms from Harvey P. Dale, Jun 07 2018
Previous Showing 31-40 of 93 results. Next