cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 83 results. Next

A125836 Numbers whose base 8 or octal representation is 555555555......5.

Original entry on oeis.org

0, 5, 45, 365, 2925, 23405, 187245, 1497965, 11983725, 95869805, 766958445, 6135667565, 49085340525, 392682724205, 3141461793645, 25131694349165, 201053554793325, 1608428438346605, 12867427506772845, 102939420054182765
Offset: 1

Views

Author

Zerinvary Lajos, Feb 03 2007

Keywords

Examples

			Octal...............decimal
0........................0
5........................5
55......................45
555....................365
5555..................2925
55555................23405
555555..............187245
5555555............1497965
55555555..........11983725
555555555.........95869805
5555555555.......766958445
etc. ...............etc.
		

Crossrefs

Programs

  • GAP
    List([1..30], n-> 5*(8^(n-1) -1)/7); # G. C. Greubel, Aug 03 2019
  • Magma
    [5*(8^(n-1) -1)/7: n in [1..30]]; // G. C. Greubel, Aug 03 2019
    
  • Maple
    seq(5*(8^n-1)/7, n=0..30);
  • Mathematica
    5*(8^(Range[30]-1) -1)/7 (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    vector(30, n, 5*(8^(n-1) -1)/7) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    [5*(8^(n-1) -1)/7 for n in (1..30)] # G. C. Greubel, Aug 03 2019
    

Formula

a(n) = 5*(8^(n-1) -1)/7 = 5*A023001(n-1).
a(n) = 8*a(n-1) + 5, with a(1)=0. - Vincenzo Librandi, Sep 30 2010
G.f.: 5*x^2/( (1-x)*(1-8*x)). - R. J. Mathar, Sep 30 2013
From G. C. Greubel, Aug 03 2019: (Start)
a(n) = 5*A024088(n-1)/7.
E.g.f.: 5*(exp(8*x) - exp(x))/7. (End)

A229393 Number of shapes of balanced 8-ary trees with n nodes, where a tree is balanced if the total number of nodes in subtrees corresponding to the branches of any node differ by at most one.

Original entry on oeis.org

1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 64, 1792, 28672, 286720, 1835008, 7340032, 16777216, 16777216, 469762048, 5754585088, 40282095616, 176234168320, 493455671296, 863547424768, 863547424768, 377801998336, 6044831973376, 42313823813632, 169255295254528
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2013

Keywords

Comments

a(n) = 1 for n in { A023001 }.

Crossrefs

Column k=8 of A221857.

Programs

  • Maple
    a:= proc(n) option remember; local m, r; if n<2 then 1 else
          r:= iquo(n-1, 8, 'm'); binomial(8, m) *a(r+1)^m *a(r)^(8-m) fi
        end:
    seq(a(n), n=0..73);

A267703 Conjectured list of numbers whose trajectory under the '7x+1' map eventually reaches 1.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 10, 16, 18, 20, 32, 36, 40, 41, 64, 72, 73, 80, 82, 128, 144, 146, 160, 164, 167, 256, 288, 292, 320, 328, 329, 334, 512, 576, 584, 585, 640, 656, 658, 668, 1024, 1152, 1168, 1170, 1280, 1312, 1316, 1336, 1337, 1965, 2048, 2304, 2336, 2340, 2560
Offset: 1

Views

Author

Michel Lagneau, Jan 19 2016

Keywords

Comments

This is conjectural in that there is no known proof that the missing numbers 3, 6, 7, ... are really missing. It may be that after a very large number of iterations they will cycle. - N. J. A. Sloane, Jan 23 2016
Note that the computer program does not actually calculate a complete list of "numbers k such that the Collatz-like map T: if x odd, x -> 7*x+1 and if x even, x -> x/2, when started at k, eventually reaches 1".

Examples

			5 is in the sequence because the trajectory of 5 is 5 -> 36 -> 18 -> 9 -> 64 -> 32 -> 16 -> 8 -> 4 -> 2 -> 1.
		

Crossrefs

Programs

  • Maple
    nn:=10000:
    for n from 1 to 2340 do:
      m:=n:cyc:={n}:
        for i from 1 to nn do:
         if irem(m,2)=0
          then
           m:=m/2:
          else
          m:=7*m+1:
         fi:
        cyc:=cyc union {m}:
        od:
        n0:=nops(cyc):
        if n0N. J. A. Sloane, Jan 23 2016)

Extensions

Entry revised by N. J. A. Sloane, Jan 23 2016
a(19)-a(55) from Dmitry Kamenetsky, Jun 24 2024

A299913 a(n) = a(n-1) + 2*a(n-2) if n even, or 3*a(n-1) + 4*a(n-2) if n odd, starting with 0, 1.

Original entry on oeis.org

0, 1, 1, 7, 9, 55, 73, 439, 585, 3511, 4681, 28087, 37449, 224695, 299593, 1797559, 2396745, 14380471, 19173961, 115043767, 153391689, 920350135, 1227133513, 7362801079, 9817068105, 58902408631, 78536544841, 471219269047, 628292358729, 3769754152375, 5026338869833
Offset: 0

Views

Author

N. J. A. Sloane, Mar 10 2018

Keywords

References

  • Murat Sahin and Elif Tan, Conditional (strong) divisibility sequences, Fib. Q., 56 (No. 1, 2018), 18-31.

Crossrefs

Bisections give A023001, A083068.

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <8|8|-1>>^n. <<0, 1, 1>>)[1,1]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Mar 10 2018
  • Mathematica
    Fold[Append[#1, Inner[Times, 2 Boole[OddQ@ #2] + {1, 2}, {#1[[-1]], #1[[-2]]}, Plus]] &, {0, 1}, Range[2, 30]] (* or *)
    CoefficientList[Series[-x (2 x + 1)/((x + 1) (8 x^2 - 1)), {x, 0, 30}], x] (* Michael De Vlieger, Mar 10 2018 *)
    nxt[{n_,a_,b_}]:={n+1,b,If[OddQ[n],b+2a,3b+4a]}; NestList[nxt,{1,0,1},30][[;;,2]] (* Harvey P. Dale, Mar 02 2025 *)
  • PARI
    concat(0, Vec(x*(1 + 2*x) / ((1 + x)*(1 - 8*x^2)) + O(x^40))) \\ Colin Barker, Mar 11 2018

Formula

G.f.: -x*(2*x+1)/((x+1)*(8*x^2-1)). - Alois P. Heinz, Mar 10 2018
From Colin Barker, Mar 11 2018: (Start)
a(n) = (2^(3*n/2) - 1) / 7 for n even.
a(n) = 3*2^((3*(n-1))/2+1)/7 + 1/7 for n odd.
a(n) = -a(n-1) + 8*a(n-2) + 8*a(n-3) for n>2.
(End)

Extensions

More terms from Altug Alkan, Mar 10 2018

A361475 Array read by ascending antidiagonals: A(n, k) = (k^n - 1)/(k - 1), with k >= 2.

Original entry on oeis.org

0, 1, 0, 3, 1, 0, 7, 4, 1, 0, 15, 13, 5, 1, 0, 31, 40, 21, 6, 1, 0, 63, 121, 85, 31, 7, 1, 0, 127, 364, 341, 156, 43, 8, 1, 0, 255, 1093, 1365, 781, 259, 57, 9, 1, 0, 511, 3280, 5461, 3906, 1555, 400, 73, 10, 1, 0, 1023, 9841, 21845, 19531, 9331, 2801, 585, 91, 11, 1, 0
Offset: 0

Views

Author

Stefano Spezia, Mar 13 2023

Keywords

Examples

			The array begins:
   0,  0,  0,   0,   0, ...
   1,  1,  1,   1,   1, ...
   3,  4,  5,   6,   7, ...
   7, 13, 21,  31,  43, ...
  15, 40, 85, 156, 259, ...
  ...
		

Crossrefs

Cf. A003992, A361291 (k=2*n+1), A361476 (antidiagonal sums).
Cf. A000225 (k=2), A003462 (k=3), A002450 (k=4), A003463 (k=5), A003464 (k=6), A023000 (k=7), A023001 (k=8), A002452 (k=9), A002275 (k=10), A016123 (k=11).

Programs

  • Mathematica
    A[n_,k_]:=(k^n-1)/(k-1); Flatten[Table[A[n-k+2,k],{n,0,10},{k,2,n+2}]]

Formula

E.g.f. of column k: exp(x)*(exp((k-1)*x) - 1)/(k - 1).
E.g.f. of column k: 2*exp((k+1)*x/2)*sinh((k-1)*x/2)/(k - 1).
A(n, k) = Sum_{i=0..n-1} k^i.

A033120 Base-2 digits of a(n) are, in order, the first n terms of the periodic sequence with initial period 1,0,1.

Original entry on oeis.org

1, 2, 5, 11, 22, 45, 91, 182, 365, 731, 1462, 2925, 5851, 11702, 23405, 46811, 93622, 187245, 374491, 748982, 1497965, 2995931, 5991862, 11983725, 23967451, 47934902, 95869805, 191739611, 383479222, 766958445, 1533916891
Offset: 1

Views

Author

Keywords

Comments

Minimal number of moves required, under the proviso of a classical tower-of-Hanoi game, to segregate an initial n-disc peg into even and odd numbered discs pegs. - Lekraj Beedassy, Sep 12 2006

References

  • B. Averbach & O. Chein, "A Variant Of The Tower Of Brahma" in 'The Journal of Recreational Mathematics', pp. 48-55, vol. 33, no. 1, 2004-5, Baywood, NY.

Crossrefs

Cf. A023001, A033137 (similar in base 10).

Programs

  • Mathematica
    Table[FromDigits[PadRight[{},n,{1,0,1}],2],{n,40}] (* Harvey P. Dale, Aug 26 2016 *)
  • PARI
    a(n)=if(n%3==0,5*8^(n/3)-5,if(n%3==1,10*8^((n-1)/3)-3,20*8^((n-2)/3)-6))/7 \\ Ralf Stephan
    
  • PARI
    a(n)=(5*2^n)\7 \\ Tani Akinari, Jul 15 2014

Formula

From Ralf Stephan, May 05 2004: (Start)
a(3*n) = (5*8^n - 5)/7, a(3*n+1) = (10*8^n - 3)/7, a(3*n+2) = (20*8^n - 6)/7.
G.f.: (1+x^2)/((1-x)*(1-2*x)*(1+x+x^2)). (End)
a(n) = a(n-6) + 45*2^(n-6). - Lekraj Beedassy, Sep 12 2006
The following recurrence produces this sequence: if(n==1) a(n)=1; else if(n%3==2) a(n)=a(n-1)*2; otherwise a(n)=a(n-1)*2+1. - Piotr Kakol, Jan 24 2011 (in an email message to N. J. A. Sloane).
a(n) = floor( (5/7)*2^n ). - Tani Akinari, Jul 15 2014
From Jorijn Lamberink and Paul van de Veen, Oct 14 2019: (Start)
a(n) = T(n-1) + 1 + T(n-3) + 1 + a(n-3), where T(n) = A000225(n) = 2^n-1 is the number of moves for a classic Tower of Hanoi with n discs.
a(n) = (5/8)*2^n + a(n-3).
a(n) = (5/7)*2^n - 2/3 - (1/21)*cos((2/3)*Pi*n) + (1/7)*sqrt(3)*sin((2/3)*Pi*n). (End)

Extensions

More terms from Lekraj Beedassy, Sep 12 2006

A096042 Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^8-M)/7, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n.

Original entry on oeis.org

1, 9, 2, 73, 27, 3, 585, 292, 54, 4, 4681, 2925, 730, 90, 5, 37449, 28086, 8775, 1460, 135, 6, 299593, 262143, 98301, 20475, 2555, 189, 7, 2396745, 2396744, 1048572, 262136, 40950, 4088, 252, 8, 19173961, 21570705, 10785348, 3145716, 589806
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Examples

			Triangle begins:
1
9 2
73 27 3
585 292 54 4
4681 2925 730 90 5
37449 28086 8775 1460 135 6
		

Crossrefs

Cf. A007318. First column gives A023001. Row sums give A016133.

Programs

  • Maple
    P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^8-M)/7 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11); # Alois P. Heinz, Oct 07 2009
  • Mathematica
    P[n_] := P[n] = With[{M = Array[Binomial[#1-1, #2-1]&, {n, n}]}, (MatrixPower[M, 8] - M)/7]; T[n_, k_] := P[n+1][[n+1, k]]; Table[ Table[T[n, k], {k, 1, n}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)

Extensions

Edited with more terms by Alois P. Heinz, Oct 07 2009

A103968 Sigma((8^n - 1)/7), where sigma(n) is the sum of positive divisors of n.

Original entry on oeis.org

1, 13, 74, 1092, 4864, 59200, 346112, 4756752, 19436692, 251916288, 1294876800, 20786304000, 79541043200, 1073030266880, 5303003316224, 81061789640832, 324992122224640, 4102172934143680, 20588576135708672, 376372958524932096
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Mar 31 2005

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1,(8^Range[20]-1)/7] (* Harvey P. Dale, Aug 21 2011 *)

Formula

a(n) = A000203(A023001(n)). - Amiram Eldar, Feb 24 2020

A016198 Expansion of g.f. 1/((1-x)*(1-2*x)*(1-5*x)).

Original entry on oeis.org

1, 8, 47, 250, 1281, 6468, 32467, 162590, 813461, 4068328, 20343687, 101722530, 508620841, 2543120588, 12715635707, 63578244070, 317891351421, 1589457019248, 7947285620527, 39736429151210, 198682147853201, 993410743460308, 4967053725690147, 24835268645227950
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Crossrefs

Programs

Formula

a(n) = (25*5^n - 16*2^n + 3)/12. - Bruno Berselli, Feb 09 2011
a(n) = [(5^0-2^0) + (5^1-2^1) + ... + (5^n-2^n)]/3. - r22lou(AT)cox.net, Nov 14 2005
a(0)=1, a(n) = 5*a(n-1) + 2^(n+1) - 1. - Vincenzo Librandi, Feb 07 2011
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(x)*(25*exp(4*x) - 16*exp(x) + 3)/12.
a(n) = 8*a(n-1) - 17*a(n-2) + 10*a(n-3).
a(n) = A016127(n+1) - A003463(n+2). (End)

Extensions

More terms from Wesley Ivan Hurt, May 05 2014

A327593 Numbers m where an integer b that is a power of two > 2 with 1 < b < m exists such that m is a base-b repdigit.

Original entry on oeis.org

5, 9, 10, 15, 17, 18, 21, 27, 33, 34, 36, 42, 45, 51, 54, 63, 65, 66, 68, 73, 85, 99, 102, 119, 129, 130, 132, 136, 146, 153, 165, 170, 187, 195, 198, 204, 219, 221, 231, 238, 255, 257, 258, 260, 264, 273, 292, 297, 325, 330, 341, 363, 365, 387, 390, 396, 429
Offset: 1

Views

Author

Felix Fröhlich, Sep 18 2019

Keywords

Comments

Let b(n) = A226542(n)-1. This sequence is a supersequence of b.
Conjecture 1: Let c(n) = A001220(n)-1. This sequence is a supersequence of c.
Conjecture 2: This is a supersequence of A240719.
From Bernard Schott, Sep 19 2019: (Start)
There are 3 distinct families of terms in this sequence:
1) Integers of the form: 2^q + 1 = 11_2^q with q >= 2.
First few terms: 5, 9, 17, 33, 65, 129, ...; this is A000051 \ {2, 3}. As 11_b is not a Brazilian representation, five of these terms are not Brazilian, they are 9 and the four known Fermat primes in A019434: 5, 17, 257 and 65537; all the other terms are composite and Brazilian but in a base that is not a power of two as 65 = 11_64 = 55_12.
2) Integers of the form: m * (2^q+1) = (mm)_2^q with q >= 2 and 1 < m < 2^q.
First few terms: 10, 15, 18, 27, 34, 36, ... These numbers are Brazilian with 2 digits in a base that is a power of two >= 4 as 10 = 22_4, 15 = 33_4 or 18 = 22_8.
3) Integers of the form: m * ((2^q)^s - 1)/(2^q - 1) = (mm...m)_ 2^q with q >= 2, s >= 1 and 1 <= m <= 2^q - 1.
First few terms: 21, 42, 63, 73, 85, ... These numbers are Brazilian repdigits with 3 digits or more in a base that is a power of two >= 4 as 42 = 222_4, 73 = 111_8 or 85 = 1111_4. The repunits (4^n-1)/3, (8^n-1)/7, (16^n-1)/15, (32^n-1)/31 respectively in A002450 (when >= 5), A023001 (when >=9), A131865 (when >=17), A132469 (when >=33) are subsequences of this last family.
Remark: there exist numbers that are in this sequence for two reasons as 63 = 77_8 = 333_4. (End)

Examples

			18 written in base 8 is 22. 8 is a power of two and 22 is a repdigit, so 18 is a term of the sequence.
		

Crossrefs

Programs

  • PARI
    is(n) = my(b=4, d=0); while(b < n, d=digits(n, b); if(vecmin(d)==vecmax(d), return(1)); b=2*b); 0
Previous Showing 71-80 of 83 results. Next