cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A046138 Primes p such that p+6 and p+8 are also primes.

Original entry on oeis.org

5, 11, 23, 53, 101, 131, 173, 191, 233, 263, 563, 593, 653, 821, 1013, 1223, 1283, 1481, 1601, 1613, 1871, 2081, 2333, 2543, 2963, 3251, 3323, 3461, 3533, 3761, 3911, 3923, 4013, 4211, 4253, 4643, 4793, 5003, 5273, 5471, 5651, 5843, 5861, 6263, 6353, 6563
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10^4)| IsPrime(p+6) and IsPrime(p+8)]; // Vincenzo Librandi, Jul 26 2015
    
  • Maple
    for a from 3 by 2 to 10000 do
    if `and`(isprime(a), isprime(a+6), isprime(a+8)) then print(a); end if;
    end do; # Matt C. Anderson, Jul 24 2015
  • Mathematica
    Select[Range@ 6000, AllTrue[{#, # + 6, # + 8}, PrimeQ] &] (* Michael De Vlieger, Jul 24 2015, Version 10 *)
    Select[Prime[Range[1000]],AllTrue[#+{6,8},PrimeQ]&] (* Harvey P. Dale, Jun 05 2024 *)
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(0,1e5, 6,8); # Dana Jacobsen, Oct 17 2017

Formula

A023201 INTERSECT A023202. - R. J. Mathar, Jan 23 2009

A087680 Numbers n such that n + 4 and n - 4 are both prime.

Original entry on oeis.org

7, 9, 15, 27, 33, 57, 63, 75, 93, 105, 135, 153, 177, 195, 237, 267, 273, 363, 393, 405, 435, 453, 483, 495, 567, 573, 597, 603, 657, 687, 705, 723, 747, 765, 825, 915, 933, 987, 1017, 1035, 1065, 1113, 1167, 1197, 1227, 1233, 1287, 1293, 1323, 1377, 1443
Offset: 1

Views

Author

Zak Seidov, Sep 27 2003

Keywords

Comments

All terms > 7 (prime) are divisible by 3. Also note that n-4 and n+4 are not necessarily consecutive primes. First case when n-4 and n+4 are consecutive primes is for n=93 with n-4=89 and n+4=97. - Zak Seidov, Apr 22 2015

Crossrefs

Programs

  • Maple
    ZL:=[]:for p from 1 to 1444 do if (isprime(p) and isprime(p+8) ) then ZL:=[op(ZL),(p+(p+8))/2]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007
  • Mathematica
    f[n_]:=PrimeQ[n-4]&&PrimeQ[n+4]; lst={};Do[If[f[n],AppendTo[lst,n]],{n,3,8!,2}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 09 2009 *)
    Select[Prime[Range[250]],PrimeQ[#+8]&]+4 (* Harvey P. Dale, May 21 2023 *)

Formula

a(n) = A023202(n) + 4. - Michel Marcus, Apr 22 2015

Extensions

More terms from Ray Chandler, Oct 26 2003

A104719 Concatenations of pairs of primes that differ by 10.

Original entry on oeis.org

313, 717, 1323, 1929, 3141, 3747, 4353, 6171, 7383, 7989, 97107, 103113, 127137, 139149, 157167, 163173, 181191, 223233, 229239, 241251, 271281, 283293, 307317, 337347, 349359, 373383, 379389, 409419, 421431, 433443, 439449, 457467, 499509
Offset: 1

Views

Author

Keywords

Comments

There are no primes in this sequence after a(1) = 313, as all values thereafter are divisible by 3. Semiprimes in this sequence include: a(2) = 717 = 3 * 239, a(4) = 1929 = 3 * 643, a(6) = 3747 = 3 * 1249, a(7) = 4353 = 3 * 1451, a(10) = 7989 = 3 * 2663, a(11) = 97107 = 3 * 32369, a(13) = 127137 = 3 * 42379, a(17) = 181191 = 3 * 60397, a(18) = 223233 = 3 * 74411, a(29) = 421431 = 3 * 140477, a(30) = 433443 = 3 * 144481, a(34) = 547557 = 3 * 182519, a(35) = 577587 = 3 * 192529, a(40) = 691701 = 3 * 230567, a(41) = 709719 = 3 * 236573, a(49) = 919929 = 3 * 306643, a(52) = 10091019 = 3 * 3363673.

Examples

			Primes 3 and 13 differ by 10.
		

Crossrefs

Programs

  • Mathematica
    FromDigits[Join[IntegerDigits[#],IntegerDigits[#+10]]]&/@Select[ Prime[ Range[ 100]], PrimeQ[ #+10]&] (* Harvey P. Dale, Jun 14 2015 *)

Formula

a(n) = A023203(n) concatenated with A023203(n)+10.

A178099 Numbers k such that exactly three d in the range d <= k/2 exist which divide binomial(k-d-1,d-1) and which are not coprime to k.

Original entry on oeis.org

32, 38, 45, 51, 52, 56, 57, 63, 69, 87, 145, 209, 713, 1073, 3233, 3953, 5609, 8633, 11009, 18209, 23393, 31313, 38009, 56153, 71273, 74513, 131753, 154433, 164009, 189209, 205193, 233273, 245009, 321473, 328313, 356393, 363593, 431633, 471953, 497009
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Comments

Theorem: A number m > 145 is a member if and only if it is a product p*(p+8) such that both p and p+8 are primes (A023202).
The proof is similar to that of Theorem 1 in the Shevelev link. - Vladimir Shevelev, Feb 23 2016

Crossrefs

Programs

  • Maple
    A178099 := proc(n) local dvs,d ; dvs := {} ; for d from 1 to n/2 do if gcd(n,d) > 1 and d in numtheory[divisors]( binomial(n-d-1,d-1)) then dvs := dvs union {d} ; end if; end do: if nops(dvs) = 3 then printf("%d,\n",n); end if; end proc:
    for n from 1 do A178099(n) end do; # R. J. Mathar, May 28 2010
  • Mathematica
    Select[Range[4000], Function[n, Count[Range[n/2], k_ /; And[! CoprimeQ[n, k], Divisible[Binomial[n - k - 1, k - 1], k]]] == 3]] (* Michael De Vlieger, Feb 17 2016 *)
  • PARI
    isok(n) = sum(d=2, n\2, (gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0)) == 3; \\ Michel Marcus, Feb 17 2016
    
  • PARI
    isok(n) = {my(nb = 0); for (d=2, n\2, if ((gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0), nb++); if (nb > 3, return (0));); nb == 3;} \\ Michel Marcus, Feb 17 2016

Formula

{k: A178101(k) = 3}.

Extensions

Definition corrected, 54 and 91 removed by R. J. Mathar, May 28 2010
a(11)-a(23) from Michel Marcus, Feb 17 2016
a(24)-a(40) from Shevelev Theorem in Comments by Robert Price, May 14 2019

A248855 a(n) is the smallest positive integer m such that if k >= m then a(k+1,n)^(1/(k+1)) <= a(k,n)^(1/k), where a(k,n) is the k-th term of the sequence {p | p and p+2n are primes}.

Original entry on oeis.org

1, 1, 1, 1, 3556, 1, 34, 3, 4, 1, 2, 1, 11285, 5, 2, 124, 569, 1, 290, 3, 1, 165, 2, 1, 1, 2, 1, 316, 1, 2, 58957, 1, 3, 58617, 522, 2, 1, 1, 4, 1, 2, 1, 1, 2, 1, 7932, 4, 1, 5875, 1679, 4, 4, 3, 3, 1, 2, 307, 1, 1, 1, 1, 1, 4, 3206, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 2, 11170, 1, 2, 4245, 1, 1, 81, 2, 1, 1, 2, 58, 1, 3, 4, 7303, 1, 1, 5, 1, 3, 3, 3, 383, 111408, 1
Offset: 0

Views

Author

Keywords

Comments

All terms conjecturally are found. Note that according to the definition a(k,0) is the k-th term of the sequence {p | p is prime} namely for every positive integer k, a(k,0) = prime(k). Hence if Firoozbakht's conjecture is true then a(0)=1.

Examples

			a(0)=a(1)=a(2)=a(3)=1 conjecturally states that the four sequences A000040, A001359, A023200 and A023201 have this property: For every positive integer n, b(n) exists and b(n+1) < b(n)^(1+1/n). Namely b(n)^(1/n) is a strictly decreasing function of n.
If in the definition instead of the sequence {p | p and p+2n are primes} we set {p | p is prime and nextprime(p)=p+2n} then it seems that except for n=3 all terms of the new sequence {c(n)} are equal to 1 and for n=3, c(3)=7746. Note that c(3)=7746 means that the sequence {p | p is prime and nextprime(p)=p+6} = A031924 has this property: For all k >= 7746, A031924(k+1)^(1/(k+1)) < A031924(k)^(1/k).
		

Crossrefs

A049491 Numbers k such that k and k+128 are both prime.

Original entry on oeis.org

3, 11, 23, 29, 53, 71, 83, 101, 113, 149, 179, 239, 251, 269, 281, 293, 311, 359, 419, 443, 449, 479, 491, 503, 563, 599, 641, 659, 683, 701, 809, 839, 863, 881, 911, 941, 1103, 1109, 1151, 1163, 1193, 1301, 1319, 1361, 1439, 1451, 1481, 1493, 1499, 1571
Offset: 1

Views

Author

Keywords

Examples

			11 and 11+128 = 139 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..2000] | IsPrime(n) and IsPrime(n+128)]; // Vincenzo Librandi, Feb 02 2014
  • Mathematica
    Select[Prime[Range[300]],PrimeQ[#+128]&] (* Harvey P. Dale, Jan 16 2011 *)

A104718 Concatenations of pairs of primes that differ by 8.

Original entry on oeis.org

311, 513, 1119, 2331, 2937, 5361, 5967, 7179, 8997, 101109, 131139, 149157, 173181, 191199, 233241, 263271, 269277, 359367, 389397, 401409, 431439, 449457, 479487, 491499, 563571, 569577, 593601, 599607, 653661, 683691, 701709, 719727, 743751
Offset: 1

Views

Author

Jonathan Vos Post, Mar 20 2005

Keywords

Comments

There are no primes in this sequence after a(1) = 311, as all values thereafter are divisible by 3. Semiprimes in this sequence include: a(3) = 1119 = 3 * 373 a(6) = 5361 = 3 * 1787, a(8) = 7179 = 3 * 2393, a(9) = 8997 = 3 * 2999, a(10) = 101109 = 3 * 33703, a(13) = 173181 = 3 * 57727, a(15) = 233241 = 3 * 77747, a(17) = 269277 = 3 * 89759, a(21) = 431439 = 3 * 143813, a(26) = 569577 = 3 * 189859, a(35) = 821829 = 3 * 273943.

Crossrefs

Formula

a(n) = A023202(n) concatenated with A023202(n)+8.

A252089 Primes p such that p + 26 is prime.

Original entry on oeis.org

3, 5, 11, 17, 41, 47, 53, 71, 83, 101, 113, 131, 137, 167, 173, 197, 251, 257, 281, 311, 347, 353, 383, 431, 461, 521, 587, 593, 617, 647, 683, 701, 743, 761, 797, 827, 857, 881, 911, 941, 971, 983, 1013, 1061, 1091, 1097, 1103, 1187, 1223, 1277, 1301, 1373
Offset: 1

Views

Author

Vincenzo Librandi, Dec 14 2014

Keywords

Examples

			17 is in this sequence because 17+26 = 43 is prime.
431 is in this sequence because 431+26 = 457 is prime.
		

Crossrefs

Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), this sequence (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), A156104 (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [NthPrime(n): n in [1..250] | IsPrime(NthPrime(n)+26)];
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[# + 26] &]

A361485 Primes p such that p + 1024 is also prime.

Original entry on oeis.org

7, 37, 67, 73, 79, 127, 139, 157, 163, 193, 199, 277, 283, 337, 349, 409, 457, 463, 487, 499, 547, 577, 613, 643, 673, 709, 787, 823, 853, 877, 883, 907, 1039, 1063, 1087, 1117, 1129, 1213, 1249, 1327, 1399, 1423, 1453, 1567, 1597, 1609, 1663, 1669, 1753, 1777, 1873, 1879
Offset: 1

Views

Author

Elmo R. Oliveira, Mar 13 2023

Keywords

Comments

All terms are == 1 (mod 6).

Examples

			139 and 139 + 1024 = 1163 are both prime.
		

Crossrefs

Cf. A000040.
Cf. sequences of the type p + k are primes: A001359 (k = 2), A023200 (k = 4), A023202 (k = 8), A049488 (k = 16), A049489 (k = 32), A049490 (k = 64), A049491 (k = 128), A361483 (k = 256), A361484 (k = 512), this sequence (k = 1024).

Programs

  • PARI
    lista(nn)=my(v=vector(nn), p=2); for(n=1, nn, until(isprime(p+1024), p=nextprime(p+1)); v[n]=p); v \\ Winston de Greef, Mar 20 2023

A049436 p, p+8 and either p+2 or p+6 or both are all primes.

Original entry on oeis.org

3, 5, 11, 23, 29, 53, 59, 71, 101, 131, 149, 173, 191, 233, 263, 269, 431, 563, 569, 593, 599, 653, 821, 1013, 1031, 1061, 1223, 1229, 1283, 1289, 1319, 1451, 1481, 1601, 1613, 1619, 1871, 2081, 2129, 2333, 2339, 2381, 2543, 2549, 2711, 2789, 2963, 3251
Offset: 1

Views

Author

Keywords

Examples

			3 is here because 5, 7 and 11 are primes; 5 is here because 7, 11 and 13 are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[500]],PrimeQ[#+8]&&AnyTrue[#+{2,6},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 04 2017 *)
Previous Showing 11-20 of 38 results. Next